Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems

Dennis Jenke and Tage Carlson
PDA Journal of Pharmaceutical Science and Technology September 2014, 68 (5) 407-455; DOI: https://doi.org/10.5731/pdajpst.2014.00995
Dennis Jenke
Baxter Healthcare Corporation, Round Lake, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dennis_jenke@baxter.com
Tage Carlson
Baxter Healthcare Corporation, Round Lake, IL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Demonstrating suitability for intended use is necessary to register packaging, delivery/administration, or manufacturing systems for pharmaceutical products. During their use, such systems may interact with the pharmaceutical product, potentially adding extraneous entities to those products. These extraneous entities, termed leachables, have the potential to affect the product's performance and/or safety. To establish the potential safety impact, drug products and their packaging, delivery, or manufacturing systems are tested for leachables or extractables, respectively. This generally involves testing a sample (either the extract or the drug product) by a means that produces a test method response and then correlating the test method response with the identity and concentration of the entity causing the response. Oftentimes, analytical tests produce responses that cannot readily establish the associated entity's identity. Entities associated with un-interpretable responses are termed unknowns. Scientifically justifiable thresholds are used to establish those individual unknowns that represent an acceptable patient safety risk and thus which do not require further identification and, conversely, those unknowns whose potential safety impact require that they be identified. Such thresholds are typically based on the statistical analysis of datasets containing toxicological information for more or less relevant compounds.

This article documents toxicological information for over 540 extractables identified in laboratory testing of polymeric materials used in pharmaceutical applications. Relevant toxicological endpoints, such as NOELs (no observed effects), NOAELs (no adverse effects), TDLOs (lowest published toxic dose), and others were collated for these extractables or their structurally similar surrogates and were systematically assessed to produce a risk index, which represents a daily intake value for life-long intravenous administration. This systematic approach uses four uncertainty factors, each assigned a factor of 10, which consider the quality and relevance of the data, differences in route of administration, non-human species to human extrapolations, and inter-individual variation among humans. In addition to the risk index values, all extractables and most of their surrogates were classified for structural safety alerts using Cramer rules and for mutagenicity alerts using an in silico approach (Benigni/Bossa rule base for mutagenicity via Toxtree). Lastly, in vitro mutagenicity data (Ames Salmonella typimurium and Mouse Lymphoma tests) were collected from available databases (Chemical Carcinogenesis Research Information and Carcinogenic Potency Database).

The frequency distributions of the resulting data were established; in general risk index values were normally distributed around a band ranging from 5 to 20 mg/day. The risk index associated with 95% level of the cumulative distribution plot was approximately 0.1 mg/day. Thirteen extractables in the dataset had individual risk index values less than 0.1 mg/day, although four of these had additional risk indices, based on multiple different toxicological endpoints, above 0.1 mg/day. Additionally, approximately 50% of the extractables were classified in Cramer Class 1 (low risk of toxicity) and approximately 35% were in Cramer Class 3 (no basis to assume safety). Lastly, roughly 20% of the extractables triggered either an in vitro or in silico alert for mutagenicity. When Cramer classifications and the mutagenicity alerts were compared to the risk indices, extractables with safety alerts generally had lower risk index values, although the differences in the risk index data distributions, extractables with or without alerts, were small and subtle.

LAY ABSTRACT: Leachables from packaging systems, manufacturing systems, or delivery devices can accumulate in drug products and potentially affect the drug product. Although drug products can be analyzed for leachables (and material extracts can be analyzed for extractables), not all leachables or extractables can be fully identified. Safety thresholds can be used to establish whether the unidentified substances can be deemed to be safe or whether additional analytical efforts need to be made to secure the identities. These thresholds are typically based on the statistical analysis of datasets containing toxicological information for more or less relevant compounds.

This article contains safety data for over 500 extractables that were identified in laboratory characterizations of polymers used in pharmaceutical applications. The safety data consists of structural toxicity classifications of the extractables as well as calculated risk indices, where the risk indices were obtained by subjecting toxicological safety data, such as NOELs (no observed effects), NOAELs (no adverse effects), TDLOs (lowest published toxic dose), and others to a systematic evaluation process using appropriate uncertainty factors. Thus the risk index values represent daily exposures for the lifetime intravenous administration of drugs. The frequency distributions of the risk indices and Cramer classifications were examined. The risk index values were normally distributed around a range of 5 to 20 mg/day, and the risk index associated with the 95% level of the cumulative frequency plot was 0.1 mg/day. Approximately 50% of the extractables were in Cramer Class 1 (low risk of toxicity) and approximately 35% were in Cramer Class 3 (high risk of toxicity). Approximately 20% of the extractables produced an in vitro or in silico mutagenicity alert. In general, the distribution of risk index values was not strongly correlated with the either extractables' Cramer classification or by mutagenicity alerts. However, extractables with either in vitro or in silico alerts were somewhat more likely to have low risk index values.

  • Extractables
  • Leachables
  • Safety assessment
  • Thresholds
  • Risk index (RI)
  • Toxicological risk assessment
  • © PDA, Inc. 2014
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 5
September/October 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems
Dennis Jenke, Tage Carlson
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 407-455; DOI: 10.5731/pdajpst.2014.00995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems
Dennis Jenke, Tage Carlson
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 407-455; DOI: 10.5731/pdajpst.2014.00995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Hypothesis and Purpose
    • Experimental
    • Results and Discussion
    • Conclusion
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Using Extractables Data of Sterile Filter Components for Scaling Calculations
  • Assessment of Extractable Elements from Elastomers
  • Comparative Extractables Study of Autoclavable Polyethersulfone Filter Cartridges for Sterile Filtration
  • Does an interaction exist between ketamine hydrochloride and Becton Dickinson syringes?
  • Creating a Holistic Extractables and Leachables (E&L) Program for Biotechnology Products
  • Google Scholar

More in this TOC Section

  • A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products
  • Definition of Particle Visibility Threshold in Parenteral Drug Products—Towards Standardization of Visual Inspection Operator Qualification
  • Understanding Alignment in the Execution of Extractable Screening Studies Between Laboratories: Results of the ELSIE Lab Practices Sub-Team Industry Surveys
Show more Research

Similar Articles

Keywords

  • Extractables
  • Leachables
  • Safety assessment
  • Thresholds
  • Risk index (RI)
  • Toxicological risk assessment

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire