Abstract
A fast, reproducible, non-destructive method to confirm raw material identification in real-time upon material receipt within a warehouse environment is desired. Current practices in pharmaceutical manufacturing often employ compendia methods for raw material identification tests, which require sample preparation prior to time-consuming chemical analysis and often employ subjective spectral comparisons. We have developed, qualified, and validated a rapid objective identity method (“Rapid ID”) by Raman spectroscopy using the Bruker BRAVO handheld Raman spectrometer for 46 common raw materials used in upstream and downstream biopharmaceutical cell culture–based processes. Materials in the Raman identification library include amino acids and other solid neat organic chemicals, liquid organics, polyatomic salts, polymers, emulsifiers, peptides, aqueous solutions, and buffers. Selection of reference spectra and hit quality index limit(s) was based upon a comprehensive spectral survey across multiple suppliers and lots to account for normal cause spectral variation. Method repeatability and reproducibility, selectivity, and robustness against various operational and environmental factors (e.g., instrumental variance, material packaging, and thermal effects) were evaluated. Benefits of a handheld Raman Rapid ID approach include significant reduction of the time for raw material quality release from weeks to minutes, enhanced objectivity, and robust data integrity via autonomous electronic reporting. In addition, routine collection of rich spectroscopic data on raw materials can be leveraged to support further continuous improvement initiatives, including routine monitoring of method performance, continuous improvement of the library, proactive detection of shifts in raw material properties, and provision of data for investigations focused on raw materials. Rapid ID methods are consistent with the move toward the principles of Pharma 4.0—high automated processes with continuous process verification and a holistic control strategy.
LAY ABSTRACT: A fast, reproducible, non-destructive method is desired to confirm raw material identification in real time upon receipt within a warehouse environment. We have developed, qualified and validated a rapid objective identity method (“Rapid ID”) by Raman spectroscopy using the Bruker BRAVO handheld Raman spectrometer for 46 common raw materials used in upstream and downstream biopharmaceutical cell culture–based processes. Benefits of a handheld Raman Rapid ID approach include significant time reduction of raw material quality release from weeks to minutes, enhanced objectivity, and robust data integrity via autonomous electronic reporting. Rapid ID methods are consistent with the move toward the principles of Pharma 4.0: high automated processes with continuous process verification and a holistic control strategy.
- © PDA, Inc. 2019
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.