RT Journal Article SR Electronic T1 Applying Machine Learning to the Visual Inspection of Filled Injectable Drug Products JF PDA Journal of Pharmaceutical Science and Technology JO PDA J Pharm Sci Technol FD Parenteral Drug Association (PDA) SP 376 OP 401 DO 10.5731/pdajpst.2022.012796 VO 77 IS 5 A1 Veillon, Romain A1 Shabushnig, John A1 Aabye-Hansen, Lars A1 Duvinage, Matthieu A1 Eckstein, Christian A1 Li, Zheng A1 Sardella, Andrea A1 Soto, Manuel A1 Torres, Jorge Delgado A1 Turnquist, Brian YR 2023 UL http://journal.pda.org/content/77/5/376.abstract AB With machine learning (ML), we see the potential to better harness the intelligence and decision-making abilities of human inspectors performing manual visual inspection (MVI) and apply this to automated visual inspection (AVI) with the inherent improvements in throughput and consistency. This article is intended to capture current experience with this new technology and provides points to consider for successful application to AVI of injectable drug products. The technology is available today for such AVI applications. Machine vision companies have integrated ML as an additional visual inspection tool with minimal upgrades to existing hardware. Studies have demonstrated superior results in defect detection and reduction in false rejects, when compared with conventional inspection tools. ML implementation does not require modifications to current AVI qualification strategies. The utilization of this technology for AVI will accelerate recipe development by use of faster computers rather than by direct human configuration and coding of vision tools. By freezing the model developed with artificial intelligence tools and subjecting it to current validation strategies, assurance of reliable performance in the production environment can be achieved.