TY - JOUR T1 - In Situ Phase-Transited Asymmetric Membrane Capsules: A Means for Achieving Delayed and Osmotic Release for pH Solubility-Dependant Drugs JF - PDA Journal of Pharmaceutical Science and Technology JO - PDA J Pharm Sci Technol SP - 32 LP - 41 VL - 65 IS - 1 AU - Anil K. Philip AU - Betty Philip Y1 - 2011/01/01 UR - http://journal.pda.org/content/65/1/32.abstract N2 - In the present study, an in situ nondisintegrating polymeric capsular system in achieving delayed as well as improved osmotic flow for the model drug cefadroxil was developed. In situ formed asymmetric membrane capsule was prepared by precipitation of the asymmetric membrane (AM) on the walls of conventional hard gelatin capsules in fabricated glass holders via a dry phase inversion process. The effect of different formulation variables were studied based on a 23 factorial design as one variable changed from one level to another, namely, the level of osmogen, ethylcellulose, and pore former, apart from studying the effect of varying osmotic pressure and agitation intensity on drug release. Scanning electron microscopy showed an outer, dense, non-porous region and an inner, lighter, porous region for the prepared AM inside, and a gelatin layer outside. Statistical testing (Dunnett multiple comparison test) was applied for in vitro drug release (n = 6) at P < 0.05. The best formulation in the design closely corresponded to the extra design checkpoint formulation by a similarity (f2) value of 96.18. The drug release was independent of the agitation intensity but dependent on the osmotic pressure of the dissolution media. The release kinetics followed the Higuchi model, and the mechanism of release was Fickian diffusion. LAY ABSTRACT: The asymmetric membrane capsule (AMC) is a unique drug delivery system that looks like a conventional hard gelatin capsule but has significant advantages over it. In the present study, a system was made that had an outer disintegrating hard gelatin capsule and an inner nondisintegrating polymeric capsular system for delivering a model drug cefadroxil. The inner nondisintegrating polymeric capsular system was the AMC, which was prepared by precipitation of the asymmetric membrane (AM) on the walls of conventional hard gelatin capsules in fabricated glass holders via a dry phase inversion process. The effect of different formulation variables that might affect the drug release were studied based on a 23 factorial design. The formulation variables were level of osmogen, ethylcellulose, and pore former. The effect of varying osmotic pressure and agitation intensity on drug release was also studied. Scanning electron microscopy showed an outer, dense, nonporous region and an inner, lighter, porous region for the prepared AM inside, and a gelatin layer outside. Statistical testing was applied for in vitro drug release. Results showed the drug release to be independent of the agitation intensity but dependent on the osmotic pressure of the dissolution media. The release kinetics followed the Higuchi model, and the mechanism of release was Fickian diffusion. ER -