RT Journal Article SR Electronic T1 Comparison of Acid Titration, Conductivity, Flame Photometry, ICP-MS, and Accelerated Lamellae Formation Techniques in Determining Glass Vial Quality JF PDA Journal of Pharmaceutical Science and Technology JO PDA J Pharm Sci Technol FD Parenteral Drug Association (PDA) SP 248 OP 255 DO 10.5731/pdajpst.2015.006056 VO 70 IS 3 A1 Kiyoshi Fujimori A1 Hans Lee A1 Christopher Sloey A1 Margaret S. Ricci A1 Zai-Qing Wen A1 Joseph Phillips A1 Yasser Nashed-Samuel YR 2016 UL http://journal.pda.org/content/70/3/248.abstract AB Certain types of glass vials used as primary containers for liquid formulations of biopharmaceutical drug products have been observed with delamination that produced small glass like flakes termed lamellae under certain conditions during storage. The cause of this delamination is in part related to the glass surface defects, which renders the vials susceptible to flaking, and lamellae are formed during the high-temperature melting and annealing used for vial fabrication and shaping. The current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. Four alternative techniques with improved throughput, convenience, and/or comprehension were examined by subjecting seven lots of vials to analysis by all techniques. The first three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the same sample pools as acid titration. All three showed good correlation with alkalinity: conductivity (R2 = 0.9951), flame photometry sodium (R2 = 0.9895), and several elements by inductively coupled plasma mass spectrometry [(sodium (R2 = 0.9869), boron (R2 = 0.9796), silicon (R2 = 0.9426), total (R2 = 0.9639)]. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and then inspected those vials visually for lamellae. The visual inspection results without the lot with different processing condition correlated well with alkalinity (R2 = 0.9474). Due to vial processing differences affecting alkalinity measurements and delamination propensity differently, the ratio of silicon and sodium measurements from inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality and vial propensity for lamellae formation. The other techniques of conductivity, flame photometry, and accelerated lamellae formation condition may still be suitable for routine screening of vial lots produced under consistent processes.LAY ABSTRACT: Recently, delamination that produced small glass like flakes termed lamellae has been observed in glass vials that are commonly used as primary containers for pharmaceutical drug products under certain conditions during storage. The main cause of these lamellae was the quality of the glass itself related to the manufacturing process. Current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. As alternative to the European Pharmacopoeia method, four other techniques were assessed. Three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the vial extract pool as acid titration to quantify quality, and they demonstrated good correlation with original alkalinity. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and the vials were then inspected visually for lamellae. The accelerated lamellae formation technique also showed good correlation with alkalinity. Of the new four techniques, inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality even with differences in processing between vial lots. Other three techniques were still suitable for routine screening of vial lots produced under consistent processes.