TY - JOUR T1 - A QRM Discussion of Microbial Contamination of Non-sterile Drug Products, Using FDA and EMA Warning Letters Recorded between 2008 and 2016 JF - PDA Journal of Pharmaceutical Science and Technology JO - PDA J Pharm Sci Technol SP - 62 LP - 72 DO - 10.5731/pdajpst.2016.007252 VL - 72 IS - 1 AU - Ana M. C. Santos AU - Mara S. Doria AU - Luís Meirinhos-Soares AU - António J. Almeida AU - José C. Menezes Y1 - 2018/01/01 UR - http://journal.pda.org/content/72/1/62.abstract N2 - Microbial quality control of non-sterile drug products has been a concern to regulatory agencies and the pharmaceutical industry since the 1960s. Despite being an old challenge to companies, microbial contamination still affects a high number of manufacturers of non-sterile products. Consequences go well beyond the obvious direct costs related to batch rejections or product recalls, as human lives and a company's reputation are significantly impacted if such events occur. To better manage risk and establish effective mitigation strategies, it is necessary to understand the microbial hazards involved in non-sterile drug products manufacturing, be able to evaluate their potential impact on final product quality, and apply mitigation actions. Herein we discuss the most likely root causes involved in microbial contaminations referenced in warning letters issued by US health authorities and non-compliance reports issued by European health authorities over a period of several years. The quality risk management tools proposed were applied to the data gathered from those databases, and a generic risk ranking was provided based on a panel of non-sterile drug product manufacturers that was assembled and given the opportunity to perform the risk assessments. That panel identified gaps and defined potential mitigation actions, based on their own experience of potential risks expected for their processes. Major findings clearly indicate that the manufacturers affected by the warning letters should focus their attention on process improvements and microbial control strategies, especially those related to microbial analysis and raw material quality control. Additionally, the WLs considered frequently referred to failures in quality-related issues, which indicates that the quality commitment should be reinforced at most companies to avoid microbiological contaminations.LAY ABSTRACT: Microbial contamination of drug products affects the quality of non-sterile drug products produced by numerous manufacturers, representing a major risk to patients. It is necessary to understand the microbial hazards involved in the manufacturing process and evaluate their impact on final product quality so that effective prevention strategies can be implemented. A risk-based classification of most likely root causes for microbial contamination found in the warning letters issued by the US Food and Drug Administration and the European Medicines Agency is proposed. To validate the likely root causes extracted from the warning letters, a subject matter expert panel made of several manufacturers was formed and consulted. A quality risk management approach to assess microbiological contamination of non-sterile drug products is proposed for the identification of microbial hazards involved in the manufacturing process. To enable ranking of microbial contamination risks, quality risk management metrics related to criticality and overall risk were applied. The results showed that manufacturers of non-sterile drug products should improve their microbial control strategy, with special attention to quality controls of raw materials, primary containers, and closures. Besides that, they should invest in a more robust quality system and culture. As a start, manufacturers may consider investigating their specific microbiological risks, adressing their sites' own microbial ecology, type of manufacturing processes, and dosage form characteristics, as these may lead to increased contamination risks. Authorities should allow and enforce innovative, more comprehensive, and more effective approaches to in-process contamination monitoring and controls. ER -