Skip to main content
Log in

LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article provides an overview of the state-of-the-art and future trends of the application of LC–high resolution mass spectrometry to the environmental analysis of polar micropollutants. Highly resolved and accurate hybrid tandem mass spectrometry such as quadrupole/time-of-flight and linear ion trap/orbitrap technology allows for a more reliable target analysis with reference standards, a screening for suspected analytes without reference standards, and a screening for unknowns. A reliable identification requires both high resolving power and high mass spectral accuracy to increase selectivity against the matrix background and for a correct molecular formula assignment to unknown compounds. For the identification and structure elucidation of unknown compounds within a reasonable time frame and with a reasonable soundness, advanced automated software solutions as well as improved prediction systems for theoretical fragmentation patterns, retention times, and ionization behavior are needed.

a Plot of nominal m/z vs. mass defect of all matrix ions observed in two retention time (Rt) windows of a full-scan HRMS chromatogram at a resolution of 60,000 from a background soil extract. b Extracted ion chromatograms of the herbicide linuron spiked into a background soil extract and of a suspected transformation product of lenacil in a soil extract, both showing a different mass defect

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Celiz MD, Tso J, Aga DS (2009) Environ Toxicol Chem 28:2473–2484

    Article  CAS  Google Scholar 

  2. Petrovic M, Barceló D (2006) J Mass Spectrom 41:1259–1267

    Article  CAS  Google Scholar 

  3. Kellmann M, Muenster H, Zomer P, Mol H (2009) J Am Soc Mass Spectrom 20:1464–1476

    Article  CAS  Google Scholar 

  4. Kosjek T, Heath E, Petrovic M, Barceló D (2007) Trends Anal Chem 26:1076–1085

    Article  CAS  Google Scholar 

  5. Hernández F, Pozo OJ, Sancho JV, Lopez FJ, Marin JM, Ibáñez M (2005) Trends Anal Chem 24:596–612

    Article  Google Scholar 

  6. Pozo ÓJ, Sancho JV, Ibáñez M, Hernández F, Niessen WMA (2006) Trends Anal Chem 25:1030–1042

    Article  CAS  Google Scholar 

  7. Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216:510–519

    Article  CAS  Google Scholar 

  8. Lim H-K, Chen J, Sensenhauser C, Cook K, Subrahmanyam V (2007) Rapid Commun Mass Spectrom 21:1821–1832

    Article  CAS  Google Scholar 

  9. Lacorte S, Fernández-Alba AR (2006) Mass Spectrom Rev 25:866–880

    Article  CAS  Google Scholar 

  10. Sancho JV, Pozo ÓJ, Ibáñez M, Hernández F (2006) Anal Bioanal Chem 386:987–997

    Article  CAS  Google Scholar 

  11. Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR (2007) Anal Chem 79:9372–9384

    Article  Google Scholar 

  12. Krauss M, Hollender J (2008) Anal Chem 80:834–842

    Article  CAS  Google Scholar 

  13. van Leerdam JA, Hogenboom AC, van der Kooi MME, de Voogt P (2009) Int J Mass Spectrom 282:99–107

    Article  Google Scholar 

  14. Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) J Chromatogr A 1216:1126–1131

    Article  CAS  Google Scholar 

  15. Schmid Neset TS, Singer H, Longrée P, Bader H-P, Scheidegger R, Wittmer A, Andersson J (2010) Sci Total Environ (accepted)

  16. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Environ Sci Technol 43:7039–7046

    Article  CAS  Google Scholar 

  17. Nielen MWF, van Engelen MC, Zuiderent R, Ramaker R (2007) Anal Chim Acta 586:122–129

    Article  CAS  Google Scholar 

  18. Li X, Brownawell BJ (2009) Anal Chem 81:7926–7935

    Article  CAS  Google Scholar 

  19. Kind T, Fiehn O (2006) BMC Bioinformatics 7:234

    Article  Google Scholar 

  20. Thurman EM (2006) J Mass Spectrom 41:1287–1297

    Article  CAS  Google Scholar 

  21. Ibáñez M, Sancho JV, Pozo ÓJ, Hernández F (2006) Anal Bioanal Chem 384:448–457

    Article  Google Scholar 

  22. Harir M, Frommberger M, Gaspar A, Martens D, Kettrup A, El Azzouzi M, Schmitt-Kopplin P (2007) Anal Bioanal Chem 389:1459–1467

    Article  CAS  Google Scholar 

  23. Ferrer I, Thurman EM (2003) Trends Anal Chem 22:750–756

    Article  CAS  Google Scholar 

  24. Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74

    Article  CAS  Google Scholar 

  25. Ibáñez M, Sancho JV, Pozo ÓJ, Niessen WMA, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178

    Article  Google Scholar 

  26. Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27:481–489

    Article  Google Scholar 

  27. Kind T, Fiehn O (2007) BMC Bioinformatics 8:105

    Article  Google Scholar 

  28. Erve JCL, Gu M, Wang Y, DeMaio W, Talaat RE (2009) J Am Soc Mass Spectrom 20:2058–2069

    Article  CAS  Google Scholar 

  29. Liao W, Draper WM, Perera SK (2008) Anal Chem 80:7765–7777

    Article  CAS  Google Scholar 

  30. Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Anal Chem 80:5574–5582

    Article  CAS  Google Scholar 

  31. Hollender J, Singer H, Hernando D, Kosjek T, Heath E (2009) In: Kassinos D, Kümmerer K, Bester K (eds) Xenobiotics in the urban water cycle: mass flows, environmental processes, mitigation and treatment strategies, Springer, Dordrecht, pp 195–211

  32. Buttiglieri G, Peschka M, Frömel T, Müller J, Malpei F, Seel P, Knepper TP (2009) Water Res 43:2865–2873

    Article  CAS  Google Scholar 

  33. Godejohann M, Heintz L, Daolio C, Berset J-D, Muff D (2009) Environ Sci Technol 43:7055–7061

    Article  CAS  Google Scholar 

  34. European Commision (2002) Commision Decision 2002/657/EC implementing Council Directive 96/23/EC concerning performance of analytical methods and the interpretation of results. Off J Eur Commun L221/8

  35. Hernández F, Ibánez M, Sancho JV, Pozo SJ (2004) Anal Chem 76:4349–4357

    Article  Google Scholar 

  36. Kauppila TJ, Kuuranne T, Meurer EC, Eberlin MN, Kotiaho T, Kostiainen R (2002) Anal Chem 74:5470–5479

    Article  CAS  Google Scholar 

  37. Chalcraft KR, Lee R, Mills C, Britz-McKibbin P (2009) Anal Chem 81:2506–2515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Bucheli, Andreas Gerecke, Damian Helbling, and two anonymous reviewers for helpful comments concerning this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, M., Singer, H. & Hollender, J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397, 943–951 (2010). https://doi.org/10.1007/s00216-010-3608-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3608-9

Keywords

Navigation