Skip to main content

Advertisement

Log in

Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the toxic effects of benzalkonium chloride (BAC), a preservative commonly used in ophthalmic preparations, on DNA single- and double-strand breaks in immortalized human corneal epithelial cells (HCEs).

Methods

HCEs were treated with BAC in concentrations ranging from 0.00005% to 0.001% for 30 min. Cells were examined immediately after BAC exposure and after 24-h recovery. Alkaline comet assay was used to detect DNA single-strand breaks (SSBs). Immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci indicated DNA double-strand breaks (DSBs). Cell viability was measured by the MTT test.

Results

A significant increase of SSBs, detected by alkaline comet assay, was observed in a dose-dependent manner with BAC exposure in HCEs at concentrations of 0.00005% and higher. Such BAC treatment also exhibited a dose-dependent increase in DSBs, evaluated by number of γH2AX foci. In addition, a significant change in the relative cell survival rate of HCEs was observed after exposure to 0.001% BAC for 30 min. Although the toxic effects of BAC could be partly repaired after 24 h of cell recovery, SSBs and DSBs in HCEs were still present after BAC removal.

Conclusions

The results demonstrated that exposure to BAC in HCEs, even at low concentrations, could induce DNA strand breaks, which were present after BAC removal. Cell survival analysis indicated that BAC-induced DNA damage was correlated with the cytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podder SK, Moy KC, Lee VH (1992) Improving the safety of topically applied timolol in the pigmented rabbit through manipulation of formulation composition. Exp Eye Res 54:747–757

    Article  PubMed  CAS  Google Scholar 

  2. Smolen VF, Clevenger JM, Williams EJ, Bergdolt MW (1973) Biophasic availability of ophthalmic carbachol. I. Mechanisms of cationic polymer- and surfactant-promoted miotic activity. J Pharm Sci 62:958–961

    Article  PubMed  CAS  Google Scholar 

  3. Majumdar S, Hippalgaonkar K, Repka MA (2008) Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int J Pharm 348:175–178

    Article  PubMed  CAS  Google Scholar 

  4. Jaenen N, Baudouin C, Pouliquen P, Manni G, Figueiredo A, Zeyen T (2007) Ocular symptoms and signs with preserved and preservative-free glaucoma medications. Eur J Ophthalmol 17:341–349

    PubMed  CAS  Google Scholar 

  5. Broadway DC, Grierson I, O'Brien C, Hitchings RA (1994) Adverse effects of topical antiglaucoma medication. I. The conjunctival cell profile. Arch Ophthalmol 112:1437–1445

    PubMed  CAS  Google Scholar 

  6. Broadway DC, Grierson I, O'Brien C, Hitchings RA (1994) Adverse effects of topical antiglaucoma medication. II. The outcome of filtration surgery. Arch Ophthalmol 112:1446–1454

    PubMed  CAS  Google Scholar 

  7. Liang H, Baudouin C, Pauly A, Brignole-Baudouin F (2008) Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br J Ophthalmol 92:1275–1282

    Article  PubMed  CAS  Google Scholar 

  8. Debbasch C, Brignole F, Pisella PJ, Warnet JM, Rat P, Baudouin C (2001) Quaternary ammoniums and other preservatives' contribution in oxidative stress and apoptosis on Chang conjunctival cells. Invest Ophthalmol Vis Sci 42:642–652

    PubMed  CAS  Google Scholar 

  9. Chang SW, Chi RF, Wu CC, Su MJ (2000) Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp Eye Res 71:3–10

    Article  PubMed  CAS  Google Scholar 

  10. Cha SH, Lee JS, Oum BS, Kim CD (2004) Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro. Clin Experiment Ophthalmol 32:180–184

    Article  PubMed  Google Scholar 

  11. Geerling G, Daniels JT, Dart JK, Cree IA, Khaw PT (2001) Toxicity of natural tear substitutes in a fully defined culture model of human corneal epithelial cells. Invest Ophthalmol Vis Sci 42:948–956

    PubMed  CAS  Google Scholar 

  12. Guo Y, Satpathy M, Wilson G, Srinivas SP (2007) Benzalkonium chloride induces dephosphorylation of Myosin light chain in cultured corneal epithelial cells. Invest Ophthalmol Vis Sci 48:2001–2008

    Article  PubMed  Google Scholar 

  13. De Saint JM, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C (1999) Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci 40:619–630

    Google Scholar 

  14. Morgan SE, Kastan MB (1997) p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 71:1–25

    Article  PubMed  CAS  Google Scholar 

  15. Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386

    PubMed  CAS  Google Scholar 

  16. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    PubMed  CAS  Google Scholar 

  17. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  18. Kumaravel TS, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605:7–16

    PubMed  CAS  Google Scholar 

  19. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81:123–129

    Article  PubMed  CAS  Google Scholar 

  20. Baudouin C, Labbe A, Liang H, Pauly A, Brignole-Baudouin F (2010) Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 29: 312–334

    Article  PubMed  CAS  Google Scholar 

  21. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29

    Article  PubMed  CAS  Google Scholar 

  22. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  23. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  24. Burgalassi S, Chetoni P, Monti D, Saettone MF (2001) Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. Toxicol Lett 122:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Huhtala A, Mannerstrom M, Alajuuma P, Nurmi S, Toimela T, Tahti H, Salminen L, Uusitalo H (2002) Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J Ocul Pharmacol Ther 18:163–175

    Article  PubMed  CAS  Google Scholar 

  26. Sancar A (1994) Mechanisms of DNA excision repair. Science 266:1954–1956

    Article  PubMed  CAS  Google Scholar 

  27. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  28. Lowndes NF, Toh GW (2005) DNA repair: the importance of phosphorylating histone H2AX. Curr Biol 15:R99–R102

    Article  PubMed  CAS  Google Scholar 

  29. Ward IM, Minn K, Jorda KG, Chen J (2003) Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 278:19579–19582

    Article  PubMed  CAS  Google Scholar 

  30. Li Z, Yang J, Huang H (2006) Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett 580:6161–6168

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NOS. 81070756); the Natural Science Foundation of Zhejiang Province of China (NOS. Y208396); and the International Science and Technology Cooperation Project of Zhejiang Province of China (NOS. 2008C14099).

Financial Interest

No authors have any type of financial interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ye.

Additional information

The authors have full control of all primary data, and all the authors agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Wu, H., Zhang, H. et al. Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 249, 1681–1687 (2011). https://doi.org/10.1007/s00417-011-1755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1755-0

Keywords

Navigation