Skip to main content

Advertisement

Log in

Inhaled Drug Delivery for Tuberculosis Therapy

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

One third of the world population is infected with tuberculosis (TB), and new infections occur at a rate of one per second. The recent increase in the emergence of drug-resistant strains of Mycobacterium tuberculosis and the dearth of anti-TB drugs is threatening the future containment of TB. New drugs or delivery systems that will stop the spread of TB and slow down or prevent the development of drug-resistant strains are urgently required. One of the reasons for the emergence of drug-resistant strains is the exposure of mycobacteria to sub-therapeutic levels of one or more antibiotics. Lung lesions containing large numbers of bacteria are poorly vascularized and are fortified with thick fibrous tissue; conventional therapy by the oral and parenteral routes may provide sub-therapeutic levels of anti-TB drugs to these highly sequestered organisms. Administering drugs by the pulmonary route to the lungs allows higher drug concentrations in the vicinity of these lesions. Supplementing conventional therapy with inhaled anti-TB therapy may allow therapeutic concentrations of drug to penetrate effectively into lung lesions and treat the resident mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFB:

Acid-fast bacilli

AMΦ:

Alveolar Macrophage

APC:

Antigen presenting cells

BAL:

Bronco-alveolar lavage

CF:

Cystic fibrosis

CMI:

Cell mediated immunity

DTH:

Delayed-type hypersensitivity

EMB:

Ethambutol

INH:

Isoniazid

Inhl:

Inhalation

IV:

Intravenous

GI:

Gastro-intestinal

MDR:

Multi-drug resistant

Mtb:

Mycobacterium tuberculosis

PD:

Pharmacodynamic

PK:

Pharmacokinetic

PLGA:

Poly(lactic-co-glycolic acid)

PNAPs:

Porous nanoparticle aggregate particles

PZA:

Pyrazinamide

RIF:

Rifampicin

STR:

Streptomycin

TB:

Tuberculosis

XDR:

Extremely-drug resistant

REFERENCES

  1. Spiers HH. Tuberculosis or consumption. Ohio; 1906.

  2. Daniel TM, Bates JH, Downes KA. History of tuberculosis. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington: American Society for Microbiology; 1994. p. 13–24.

    Google Scholar 

  3. Gandevia B. Historical review of the use of parasympatholytic agents in the treatment of respiratory disorders. Postgrad Med J. 1975;51(7 SUPPL):13–20.

    CAS  PubMed  Google Scholar 

  4. O’ Callaghan C, Nerbrink O, Vidgren MT. The history of inhaled drug therapy. In: Bisgaard H, et al., editors. Drug delivery to the lung. New York: Informa Health Care; 2001. p. 1–20.

    Google Scholar 

  5. American Thoracic Society, Infectious diseases society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. (2005); 171(4):388–416.

    Google Scholar 

  6. Silveira F, Paterson DL. Pulmonary fungal infections. Curr Opin Pulm Med. 2005;11(3):242–6.

    Article  PubMed  Google Scholar 

  7. Wood GC, Swanson JM. Aerosolised antibacterials for the prevention and treatment of hospital-acquired pneumonia. Drugs. 2007;67(6):903–14.

    Article  CAS  PubMed  Google Scholar 

  8. Borsje P, de Jongste JC, Mouton JW, Tiddens HA. Aerosol therapy in cystic fibrosis: a survey of 54 CF centers. Pediatr Pulmonol. 2000;30(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  9. Kim SW, Kuti JL, Nicolau DP. Inhaled antimicrobial therapies for respiratory infections. Curr Infect Dis Rep. 2008;10(1):29–36.

    Article  PubMed  Google Scholar 

  10. Hagerman JK, Hancock KE, Klepser ME. Aerosolised antibiotics: a critical appraisal of their use. Expert Opin Drug Deliv. 2006;3(1):71–86.

    Article  CAS  PubMed  Google Scholar 

  11. Klepser ME. Role of nebulized antibiotics for the treatment of respiratory infections. Curr Opin Infect Dis. 2004;17(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  12. Flume P, Klepser ME. The rationale for aerosolized antibiotics. Pharmacotherapy. 2002;22(3 Pt 2):71S–9S.

    Article  CAS  PubMed  Google Scholar 

  13. Aziz MA. Anti-tuberculosis drug resistance in the world. 2004 World Health Organization, Geneva. 3.

  14. Starke JR. Tuberculosis. In: McMillan JA, et al., editors. Oski’s pediatrics: principles and practice. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 1142–54.

    Google Scholar 

  15. World Health Organization (WHO). Tuberculosis Fact sheet No104—Global and regional incidence. Revised March 2007, Retrieved on 19th March 2009.

  16. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129.

    Article  CAS  PubMed  Google Scholar 

  17. Comstock GW. Epidemiology of tuberculosis. Am Rev Respir Dis. 1982;125(3 Pt 2):8–15.

    CAS  PubMed  Google Scholar 

  18. Pandey R, Khuller GK. Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother. 2005;55(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  19. Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol. 2007;179(4):2509–19.

    CAS  PubMed  Google Scholar 

  20. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1376–95.

    Google Scholar 

  21. Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 1971;134(3 Pt 1):713–40.

    Article  CAS  PubMed  Google Scholar 

  22. Sinai AP, Joiner KA. Safe haven: the cell biology of nonfusogenic pathogen vacuoles. Annu Rev Microbiol. 1997;51:415–62.

    Article  CAS  PubMed  Google Scholar 

  23. Haas DW. Mycobacterium tuberculosis. In: Mandell GL, et al., editors. Principles and practice of infectious diseases. Philadelphia: Churchil Livingstone; 2000. p. 2576–607.

    Google Scholar 

  24. Ulrichs T, Kaufmann SH. New insights into the function of granulomas in human tuberculosis. J Pathol. 2006;208(2):261–9.

    Article  CAS  PubMed  Google Scholar 

  25. Haas DW. Mycobacteria: tuberculosis and leprosy. In: Schaechter M, et al., editors. Schaechter’s mechanisms of microbial disease. Baltimore: Lippincott Williams & Wilkins; 2006. p. 251–62.

    Google Scholar 

  26. Venable SJ. Drugs treating mycobacterial infections. In: Aschenbrenner DS, Venable SJ, editors. Drug therapy in nursing. Baltimore: Lippincott Williams & Wilkins; 2008. p. 828–41.

    Google Scholar 

  27. Nuermberger EL, Yoshimatsu T, Tyagi S, O’Brien RJ, Vernon AN, Chaisson RE, et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med. 2004;169(3):421–6.

    Article  PubMed  Google Scholar 

  28. Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2005;49(6):2289–93.

    Article  CAS  PubMed  Google Scholar 

  29. Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, Tompkins NM, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother. 2005;49(6):2294–301.

    Article  CAS  PubMed  Google Scholar 

  30. Sacks LV, Pendle S, Orlovic D, Andre M, Popara M, Moore G, et al. Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis. 2001;32(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  31. Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E. Intrapulmonary concentrations of pyrazinamide. Antimicrob Agents Chemother. 1999;43(6):1329–33.

    CAS  PubMed  Google Scholar 

  32. Conte JE Jr, Golden JA, McQuitty M, Kipps J, Duncan S, McKenna E, et al. Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. Antimicrob Agents Chemother. 2002;46(8):2358–64.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy A. Drug delivery to the lungs. In: Murphy A, editor. Asthma in focus. Chicago: Pharmaceutical; 2007. p. 113–32.

    Google Scholar 

  34. Garcia-Contreras L, Fiegel J, Telko MJ, Elbert K, Hawi A, Thomas M, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother. 2007;51(8):2830–6.

    Article  CAS  PubMed  Google Scholar 

  35. Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother. 2001;48(3):431–4.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Contreras L, Sethuraman V, Kazantseva M, Godfrey V, Hickey AJ. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother. 2006;58(5):980–6.

    Article  CAS  PubMed  Google Scholar 

  37. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 1998;85(2):379–85.

    CAS  PubMed  Google Scholar 

  38. Rijnders BJ, Cornelissen JJ, Slobbe L, Becker MJ, Doorduijn JK, Hop WC, et al. Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial. Clin Infect Dis. 2008;46(9):1401–1408.

    Article  CAS  PubMed  Google Scholar 

  39. Khuller GK, Kapur M, Sharma S. Liposome technology for drug delivery against mycobacterial infections. Curr Pharm Des. 2004;10(26):3263–74.

    Article  CAS  PubMed  Google Scholar 

  40. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  41. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–89.

    Article  CAS  PubMed  Google Scholar 

  42. Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed Engl. 2001;40(23):4330–61.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761–6.

    Article  CAS  PubMed  Google Scholar 

  44. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0. 005–15 μm. J Aerosol Sci. 1986;17(5):811–25.

    Article  Google Scholar 

  45. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25(12):563–70.

    Article  CAS  PubMed  Google Scholar 

  46. Thiele L, Merkle HP, Walter E. Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res. 2003;20(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  47. Thiele L, Merkle HP, Walter E. Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expet Rev Vaccine. 2002;1(2):215–26.

    Article  CAS  Google Scholar 

  48. Gehr P, Geiser M, Im Hof V, Schurch S. Surfactant: ultrafine particle interactions. In: Brown LM, editor. Ultrafine particles in the atmosphere. London: Imperial college press; 2003. p. 187–202.

    Google Scholar 

  49. Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol. 2008;8(2):142–52.

    Article  CAS  PubMed  Google Scholar 

  50. Neutra MR, Kraehenbhul J-P. Cellular and molecular basis for antigen transport across epithelial barriers. In: Mestecky J, et al., editors. Mucosal immunology. New York: Academic; 2005. p. 111–30.

    Chapter  Google Scholar 

  51. Pandey R, Khuller GK. Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv. 2004;1(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  52. O’Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17(8):955–61.

    Article  PubMed  Google Scholar 

  53. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  CAS  PubMed  Google Scholar 

  54. Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96(5):293–304.

    Article  CAS  PubMed  Google Scholar 

  55. Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery. Pharm Sci Technol Today. 1998;1:394–8.

    Article  CAS  Google Scholar 

  56. Koushik K, Kompella UB. Particle and device engineering for inhalation drug delivery. Drug Del Technol. 2004;4:40–50.

    CAS  Google Scholar 

  57. Riendeau CJ, Kornfeld H. THP-1 cell apoptosis in response to Mycobacterial infection. Infect Immun. 2003;71(1):254–9.

    Article  CAS  PubMed  Google Scholar 

  58. Yadav AB, Misra A. Enhancement of apoptosis of THP-1 cells infected with Mycobacterium tuberculosis by inhalable microparticles and relevance to bactericidal activity. Antimicrob Agents Chemother. 2007;51(10):3740–2.

    Article  CAS  PubMed  Google Scholar 

  59. Verma RK, Kaur J, Kumar K, Yadav AB, Misra A. Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Antimicrob Agents Chemother. 2008;52(9):3195–201.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma R, Muttil P, Yadav AB, Rath SK, Bajpai VK, Mani U, et al. Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J Antimicrob Chemother. 2007;59(3):499–506.

    Article  CAS  PubMed  Google Scholar 

  61. Wang C, Muttil P, Lu D, Beltran-Torres AA, Garcia-Contreras L, Hickey AJ. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. Aaps J. 2009;11(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  62. Williams R. Bioequivalence and therapeutic equivalence. In: Welling PG, et al., editors. Pharmaceutical bioequivalence. New York: Marcel Dekker; 1991.

    Google Scholar 

  63. Sung JC, Garcia-Contreras L, Verberkmoes JL, Peloquin CA, Elbert KJ, Hickey AJ, et al. Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother. 2009;53(4):1338–43.

    Article  CAS  PubMed  Google Scholar 

  64. Ly LH, Russell MI, McMurray DN. Cytokine profiles in primary and secondary pulmonary granulomas of Guinea pigs with tuberculosis. Am J Respir Cell Mol Biol. 2008;38(4):455–62.

    Article  CAS  PubMed  Google Scholar 

  65. Demidov SV, Miasnikov VG, Chernushenko EF, Osipova LS. Effect of thymus preparations and anti-tuberculosis agents on immunologic reactivity and the course of the tuberculosis process in experimental animals. Probl Tuberk. 1991;(12):52–4.

  66. Johnson CM, Pandey R, Sharma S, Khuller GK, Basaraba RJ, Orme IM, et al. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49(10):4335–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun. 1998;66(4):1277–81.

    CAS  PubMed  Google Scholar 

  68. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol. 2003;53(Pt 5):1305–14.

    Article  CAS  PubMed  Google Scholar 

  69. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99(6):3684–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bishai W. Tuberculosis transmission–rogue pathogen or rogue patient? Am J Respir Crit Care Med. 2001;164(7):1104–5.

    CAS  PubMed  Google Scholar 

  71. Valway SE, Sanchez MP, Shinnick TF, Orme I, Agerton T, Hoy D, et al. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N Engl J Med. 1998;338(10):633–9.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang M, Gong J, Yang Z, Samten B, Cave MD, Barnes PF. Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages. J Infect Dis. 1999;179(5):1213–7.

    Article  CAS  PubMed  Google Scholar 

  73. Young DB. Strategies for new drug development. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington: American Society for Microbiology; 1994. p. 559–68.

    Google Scholar 

  74. Fux CA, Shirtliff M, Stoodley P, Costerton JW. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 2005;13(2):58–63.

    Article  CAS  PubMed  Google Scholar 

  75. Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007;7(5):328–37.

    Article  PubMed  Google Scholar 

  76. Gagneux S. Strain variation and evolution. In: Parish T, Brown A, editors. Mycobacterium: genomics and molecular biology. Portland: Horizon Scientific; 2009. p. 1–18.

    Google Scholar 

  77. McMurray DN, Collins FM, Dannenberg AM Jr, Smith DW. Pathogenesis of experimental tuberculosis in animal models. Curr Top Microbiol Immunol. 1996;215:157–79.

    CAS  PubMed  Google Scholar 

  78. Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun. 1999;67(9):4531–8.

    CAS  PubMed  Google Scholar 

  79. Ladefoged A, Bunch-Christensen K, Guld J. Tuberculin sensitivity in guinea-pigs after vaccination with varying doses of BCG of 12 different strains. Bull World Health Organ. 1976;53(4):435–43.

    CAS  PubMed  Google Scholar 

  80. McMurray DN. Disease model: pulmonary tuberculosis. Trends Mol Med. 2001;7(3):135–7.

    Article  CAS  PubMed  Google Scholar 

  81. Orme IM. Current progress in tuberculosis vaccine development. Vaccine. 2005;23(17–18):2105–8.

    Article  CAS  PubMed  Google Scholar 

  82. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962–6.

    Article  CAS  PubMed  Google Scholar 

  83. Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18(9):1315–9.

    Article  CAS  PubMed  Google Scholar 

  84. McMurray DN. Guinea pig model of tuberculosis. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington: American Society for Microbiology; 1994. p. 135–147.

    Google Scholar 

  85. Turner OC, Basaraba RJ, Frank AA, Orme IM. Granuloma formation in mice and guinea pig models of experimental tuberculosis. In: Boros DL, editor. Granulomatous infections and inflammation: cellular and molecular mechanisms. Washington: ASM; 2003. p. 65–84.

    Google Scholar 

  86. McMurray DN. Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis (Edinb). 2003;83(1–3):131–4.

    Article  Google Scholar 

  87. Boshoff HI, Barry CE 3rd. Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol. 2005;3(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  88. Dannenberg AM, Rook GAW. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses—dual mechanisms that control bacillary multiplication. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington: ASM; 1994. p. 459–83.

    Google Scholar 

  89. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother. 2007;51(9):3338–45.

    Article  CAS  PubMed  Google Scholar 

  90. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2007;51(4):1380–5.

    Article  CAS  PubMed  Google Scholar 

  91. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol. 2006;8(2):218–32.

    Article  CAS  PubMed  Google Scholar 

  92. Smith DW, Balasubramanian V, Wiegeshaus E. A guinea pig model of experimental airborne tuberculosis for evaluation of the response to chemotherapy: the effect on bacilli in the initial phase of treatment. Tubercle. 1991;72(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  93. Basaraba RJ, Dailey DD, McFarland CT, Shanley CA, Smith EE, McMurray DN, et al. Lymphadenitis as a major element of disease in the guinea pig model of tuberculosis. Tuberculosis (Edinb). 2006;86(5):386–94.

    Article  Google Scholar 

  94. Basaraba RJ, Smith EE, Shanley CA, Orme IM. Pulmonary lymphatics are primary sites of Mycobacterium tuberculosis infection in guinea pigs infected by aerosol. Infect Immun. 2006;74(9):5397–401.

    Article  CAS  PubMed  Google Scholar 

  95. Dannenberg A. Rabbit model of tuberculosis. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington: American Society for Microbiology; 1994. p. 149–56.

    Google Scholar 

  96. McMurray DN. A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clin Infect Dis. 2000;30(Suppl 3):S210–2.

    Article  PubMed  Google Scholar 

  97. Barclay WR, Busey WM, Dalgard DW, Good RC, Janicki BW, Kasik JE, et al. Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. Am Rev Respir Dis. 1973;107(3):351–8.

    CAS  PubMed  Google Scholar 

  98. Walsh GP, Tan EV, Cruz ECD, Abalos RM, Villahermosa LG, Young LJ, et al. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med. 1996;2:430–6.

    Article  CAS  PubMed  Google Scholar 

  99. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693–702.

    Article  CAS  PubMed  Google Scholar 

  100. Flynn JL. Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect. 2006;8(4):1179–88.

    Article  CAS  PubMed  Google Scholar 

  101. Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis (Edinb). 2005;85(5–6):277–93.

    Article  CAS  Google Scholar 

  102. Harmsen AG, Muggenburg BA, Snipes MB, Bice DE. The role of macrophages in particle translocation from lungs to lymph nodes. Science. 1985;230(4731):1277–80.

    Article  CAS  PubMed  Google Scholar 

  103. Corry D, Kulkarni P, Lipscomb MF. The migration of bronchoalveolar macrophages into hilar lymph nodes. Am J Pathol. 1984;115(3):321–8.

    CAS  PubMed  Google Scholar 

  104. Tran L, Kuempel E. Biologically based lung dosimetry and exposure-dose response models for poorly soluble inhaled particles. In: Donaldson K, Borm P, editors. Particle toxicology. New York: CRC; 2006. p. 351–86.

    Chapter  Google Scholar 

  105. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A. 1999;96(3):1036–41.

    Article  CAS  PubMed  Google Scholar 

  106. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–8.

    Article  CAS  PubMed  Google Scholar 

  107. Conte JE Jr, Golden J, Duncan S, McKenna E, Lin E, Zurlinden E. Single-dose intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime in volunteer subjects. Antimicrob Agents Chemother. 1996;40(7):1617–22.

    CAS  PubMed  Google Scholar 

  108. Conte JE Jr, Golden JA, Duncan S, McKenna E, Zurlinden E. Intrapulmonary pharmacokinetics of clarithromycin and of erythromycin. Antimicrob Agents Chemother. 1995;39(2):334–8.

    CAS  PubMed  Google Scholar 

  109. Conte JE Jr, Golden JA, Kipps J, Lin ET, Zurlinden E. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethambutol concentrations. Antimicrob Agents Chemother. 2001;45(10):2891–6.

    Article  CAS  PubMed  Google Scholar 

  110. Conte JE Jr, Golden JA, McQuitty M, Kipps J, Lin ET, Zurlinden E. Single-dose intrapulmonary pharmacokinetics of rifapentine in normal subjects. Antimicrob Agents Chemother. 2000;44(4):985–90.

    Article  CAS  PubMed  Google Scholar 

  111. Cauthen GM, Kilburn JO, Kelly GD, Good RC. Resistance to antituberculosis drugs in patients with and without prior treatment: survey of 31 state and large city laboratories, 1982–1986. Am Rev Respir Dis. 1988;137(Suppl):260.

    Google Scholar 

  112. Hiyama J, Marukawa M, Shiota Y, Ono T, Mashiba H. Factors influencing response to treatment of pulmonary tuberculosis. Acta Med Okayama. 2000;54(4):139–45.

    CAS  PubMed  Google Scholar 

  113. A controlled trial of 3-month, 4-month, and 6-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis. Results at 5 years. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council. Am Rev Respir Dis. 1989;139(4):871–876.

  114. Diagnosis and treatment. In: Yancey D, editors. Tuberculosis, Twenty-first century books, Minneapolis; 2007. p. 58–76.

  115. Davies PDO, Cooke R. Mycobacterial antimicrobial resistance. In: Fong IW, Drlica K, editors. Antimicrobial resistance and implications for the 21st century. New York: Springer science and Business media; 2007. p. 161–206.

    Google Scholar 

  116. Telzak EE, Fazal BA, Pollard CL, Turett GS, Justman JE, Blum S. Factors influencing time to sputum conversion among patients with smear-positive pulmonary tuberculosis. Clin Infect Dis. 1997;25(3):666–70.

    Article  CAS  PubMed  Google Scholar 

  117. Condos R, Raju B, Canova A, Zhao BY, Weiden M, Rom WN, et al. Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect Immun. 2003;71(4):2058–64.

    Article  CAS  PubMed  Google Scholar 

  118. Condos R, Hull FP, Schluger NW, Rom WN, Smaldone GC. Regional deposition of aerosolized interferon-gamma in pulmonary tuberculosis. Chest. 2004;125(6):2146–55.

    Article  CAS  PubMed  Google Scholar 

  119. Francis C. Nebulizers and Inhalers. In: Francis C, editor. Respiratory care. Oxford: Wiley-Blackwell; 2006. p. 97–124.

    Google Scholar 

  120. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982;126(2):332–7.

    CAS  PubMed  Google Scholar 

  121. Harkema JR, Plopper CG, Pinkerton KE. Comparative structure of the respiratory tract: airway architecture in humans and animals. In: Cohen MD, et al., editors. Pulmonary immunotoxicology. New York: Springer; 2000. p. 1–60.

    Google Scholar 

  122. Edwards DA, Valente AX, Man J, Tsapis N. Recent advances related to the systemic delivery of therapeutic molecules by inhalation. In: Hickey AJ, editor. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker; 2003. p. 541–50.

    Google Scholar 

  123. Dalby RN, Tiano SL, Hickey AJ. Medical devices for the delivery of therapeutic aerosols to the lungs. In: Hickey AJ, editor. Inhalation aerosols: physical and biological basis for therapy. New York: Informa health care; 2006. p. 417–44.

    Google Scholar 

  124. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev. 1996;19(1):3–36.

    Article  CAS  Google Scholar 

  125. Schanker LS. Drug absorption from the lung. Biochem Pharmacol. 1978;27(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  126. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  127. Hemberger JA, Schanker LS. Postnatal development of carrier-mediated absorption of disodium cromoglycate from the rat lung. Proc Soc Exp Biol Med. 1979;161(3):285–8.

    CAS  PubMed  Google Scholar 

  128. Hickey AJ, Thompson DC. Physiology of the airways. In: Hickey A, editor. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker; 2003. p. 1–27.

    Google Scholar 

  129. Golden JA, Chernoff D, Hollander H, Feigal D, Conte JE. Prevention of Pneumocystis carinii pneumonia by inhaled pentamidine. Lancet. 1989;1(8639):654–7.

    Article  CAS  PubMed  Google Scholar 

  130. Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, Williams-Warren J, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med. 1999;340(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  131. Geller DE, Konstan MW, Smith J, Noonberg SB, Conrad C. Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatr Pulmonol. 2007;42(4):307–13.

    Article  PubMed  Google Scholar 

  132. Heinzl B, Eber E, Oberwaldner B, Haas G, Zach MS. Effects of inhaled gentamicin prophylaxis on acquisition of Pseudomonas aeruginosa in children with cystic fibrosis: a pilot study. Pediatr Pulmonol. 2002;33(1):32–7.

    Article  PubMed  Google Scholar 

  133. Byrne NM, Keavey PM, Perry JD, Gould FK, Spencer DA. Comparison of lung deposition of colomycin using the HaloLite and the Pari LC Plus nebulisers in patients with cystic fibrosis. Arch Dis Child. 2003;88(8):715–8.

    Article  CAS  PubMed  Google Scholar 

  134. Deterding RR, Lavange LM, Engels JM, Mathews DW, Coquillette SJ, Brody AS, et al. Phase 2 randomized safety and efficacy trial of nebulized denufosol tetrasodium in cystic fibrosis. Am J Respir Crit Care Med. 2007;176(4):362–9.

    Article  CAS  PubMed  Google Scholar 

  135. McCoy KS, Quittner AL, Oermann CM, Gibson RL, Retsch-Bogart GZ, Montgomery AB. Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am J Respir Crit Care Med. 2008;178(9):921–8.

    Article  CAS  PubMed  Google Scholar 

  136. Steiner I, Errhalt P, Kubesch K, Hubner M, Holy M, Bauer M, et al. Pulmonary pharmacokinetics and safety of nebulized duramycin in healthy male volunteers. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(3):323–33.

    Article  CAS  PubMed  Google Scholar 

  137. Aerosol consensus statement. Consensus Conference on Aerosol Delivery. Chest 1991;100(4):1106–1109.

    Google Scholar 

  138. LaForce C, Man CY, Henderson FW, McElhaney JE, Hampel FC, Bettis R Jr, et al. Efficacy and safety of inhaled zanamivir in the prevention of influenza in community-dwelling, high-risk adult and adolescent subjects: a 28-day, multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2007;29(8):1579–90. discussion 1577–1578.

    Article  PubMed  Google Scholar 

  139. Boeckh M, Englund J, Li Y, Miller C, Cross A, Fernandez H, et al. Randomized controlled multicenter trial of aerosolized ribavirin for respiratory syncytial virus upper respiratory tract infection in hematopoietic cell transplant recipients. Clin Infect Dis. 2007;44(2):245–9.

    Article  CAS  PubMed  Google Scholar 

  140. Fiegel J, Garcia-Contreras L, Thomas M, VerBerkmoes J, Elbert K, Hickey A, et al. Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res. 2008;25(4):805–11.

    Article  CAS  PubMed  Google Scholar 

  141. Tsapis N, Bennett D, O’Driscoll K, Shea K, Lipp MM, Fu K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb). 2003;83(6):379–85.

    Article  CAS  Google Scholar 

  142. Sharma R, Saxena D, Dwivedi AK, Misra A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res. 2001;18(10):1405–10.

    Article  CAS  PubMed  Google Scholar 

  143. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 2003;52(6):981–6.

    Article  CAS  PubMed  Google Scholar 

  144. Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb). 2005;85(4):227–34.

    Article  CAS  Google Scholar 

  145. Pandey R, Sharma S, Khuller GK. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int J Antimicrob Agents. 2004;24(1):93–4.

    Article  CAS  PubMed  Google Scholar 

  146. Kurunov Iu N, Ursov IG, Krasnov VA, Petrenko TI, Iakovchenko NN, Svistelnik AV, et al. Effectiveness of liposomal antibacterial drugs in the inhalation therapy of experimental tuberculosis. Probl Tuberk. 1995;(1):38–40.

  147. Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Igarashi R, Disratthakit A, et al. Lipid microsphere formulation containing rifampicin targets alveolar macrophages. Drug Deliv. 2008;15(3):169–75.

    Article  CAS  PubMed  Google Scholar 

  148. Yoshida A, Matumoto M, Hshizume H, Oba Y, Tomishige T, Inagawa H, et al. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guerin. Microbes Infect. 2006;8(9–10):2484–91.

    Article  CAS  PubMed  Google Scholar 

  149. Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci. 2007;32(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  150. Sen H, Jayanthi S, Sinha R, Sharma R, Muttil P. Inhalable biodegradable microparticles for target-specific drug delivery in tuberculosis and a process thereof. U.S.P.A. Publication. Council of Scientific and Industrial Research; Lupin Limited Research Park. India. 2007;11/684,562.

  151. Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26(8):1847–55.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the not-for-profit organization Medicine in Need. The achievements of this organization are cited in the manuscript. The authors are particularly grateful to Drs. David Edwards and Bernard Fourie for their leadership and encouragement in the effort to bring aerosol TB therapy to patients. In addition, Dr. Hickey is grateful for the financial support of Pfizer, Inc. It is largely at the suggestion of Drs. Ljiljana Harding and Christopher Grainger that this manuscript was prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muttil, P., Wang, C. & Hickey, A.J. Inhaled Drug Delivery for Tuberculosis Therapy. Pharm Res 26, 2401–2416 (2009). https://doi.org/10.1007/s11095-009-9957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9957-4

KEY WORDS

Navigation