Skip to main content
Log in

Phase Behavioral Effects on Particle Formation Processes Using Supercritical Fluids

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The application of supercritical fluid (SF) processing in pharmaceutical research is increasing particularly in the field of particle formation for drug delivery systems. The SF processes have benefits over the existing particle formation methods in terms of improved control, flexibility and operational ease. This review highlights the fundamental concepts of fluid phase behaviour and their influence on the various processes involving particle formation with supercritical fluids. Several phase behaviour systems are discussed to provide an insight into the factors influencing the process paths and their effects on the characteristics of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. A. McHugh and V. J. Krukonis. Supercritical Fluid Extraction. Principles and Practice 2nd Edition, Butterworth-Heinemann, USA, 1994.

    Google Scholar 

  2. S. Angus, B. Armstrong, and K. De Reuk. International thermodynamic tables of the fluid state-3. Carbon dioxide (Volume 3). Pergamon Press, 1976.

  3. K. Stephan and K. Lucas. Viscosity of dense fluids. Plenum Press, New York, 1979.

    Google Scholar 

  4. J. M. Dobbs, J. M. Wong, and K. P. Lohnston. Nonpolar cosolvents for solubility enhancement in supercritical carbon dioxide. J. Chem. Eng. Data. 31:303–308 (1986).

    Google Scholar 

  5. J. M. Dobbs, J. M. Wong, R. J. Lahiere, and K. P. Johnston. Modification of supercritical fluid phase behaviour using polar cosolvents. Ind. Eng. Chem. Res. 26:56–65 (1987).

    Google Scholar 

  6. J. G. Van Alsten and C. A. Eckert. Effect of entrainers and of solute size and polarity in supercritical fluid solutions. J. Chem. Eng. Data. 38:605–610 (1993).

    Google Scholar 

  7. P. Alessi, A. Cortessi, I. Kikic, N. R. Foster, S. J. Macnaughton, and I. Combo. Particle production of steroid drugs using supercritical fluid processing. Ind. Eng. Chem. Res. 35:4718–4726 (1996).

    Google Scholar 

  8. S. S. T. Ting, S. J. Macnaughtn, D. L. Tomasko, and N. R. Foster. Solubility of naproxen in supercritical carbon dioxide with and without cosolvents. Ind. Eng. Chem. Res. 32:1471–1481 (1993).

    Google Scholar 

  9. Z. Knez, M. Skerget, P. Sencar-Bozic, and A. Rizner. Solubility of nifedipine and nitrendipine in supercritical CO2. J. Chem. Eng. Data. 40:216–220 (1995).

    Google Scholar 

  10. B. Subramaniam, R. A. Rajewski, and K. Snavely. Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci. 86:885–890 (1997).

    Google Scholar 

  11. I. Kikic and P. Sist. Applications of supercritical fluids to pharmaceuticals: Controlled drug release systems. 2 nd NATO ASI on Supercritical Fluids, Kemer, Turkey. 1998.

  12. H. Tanaka and M. Kato. Vapour-liquid equilibrium properties of carbon dioxide+ethanol mixture at high pressures. J. Chem Eng. Jap. 28:263–266 (1995).

    Google Scholar 

  13. K. Suzuki, H. Sue, M. Itou, R. L. Smith, H. Inlmata, K. Arai, and S. Saito. Isothermal vapour-liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol and ethane-1-propanol systems. J. Chem. Eng. Data. 35:63–66 (1990).

    Google Scholar 

  14. DECHEMA Chemistry Data Series, 1981.

  15. S. Ohe. Vapour-liquid equilibrium data at high pressure. Elsevier, Japan. 1990.

    Google Scholar 

  16. R. E. Fornari, P. Alessi, and I. Kikic. High pressure fluid phase equilibria: Experimental methods and systems investigated (1978–1987). Fluid Phase Equilibria. 57:1–33 (1990).

    Google Scholar 

  17. R. Dohrn and G. Brunner. High-pressure fluid phase equilibria: Experimental methods and systems investigated (1988–1993). Fluid Phase Equilibria. 106:213–282 (1995).

    Google Scholar 

  18. M. L. Gilbert and M. E. Paulaitis. Gas-liquid equilibrium for ethanol-water-carbon dioxide mixtures at elevated pressures. J. Chem. Eng. Data. 31:296–298 (1986).

    Google Scholar 

  19. S. Yao, Y. Guan, and Z. Zhu. Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressures. Fluid Phase Equilibria. 99:249–259 (1994).

    Google Scholar 

  20. G. Brunner. Gas Extraction: An introduction to fundamentals of supercritical fluids and the application to separation processes. Springer, New York, 1994.

    Google Scholar 

  21. R. G. Wissinger and M. E. Paulaitis. Glass transtions in polymer/CO2 mixtures at elevated pressures. J. Pol. Sci. B. 29:631–633 (1991).

    Google Scholar 

  22. D. W. Matson, R. C. Peterson, and R. D. Smith. Production of fine powders by the rapid expansion of supercritical fluid solutions. Adv. In Ceramics. 21:109 (1987).

    Google Scholar 

  23. J. W. Tom and P. G. Debenedetti. Particle formation with supercritical fluids-A Review. J. Aerosol. Sci. 22:555–584 (1991).

    Google Scholar 

  24. E. M. Philips and V. J. Stella. Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int. J. Pharm. 94:1–10 (1993).

    Google Scholar 

  25. B. L. Knutson, P. G. Debenedetti, and J. W. Tom. In S. Cohen, H. Bernstein (eds.), Microparticulate systems for the delivery of proteins and vaccines, Drugs and the Pharmaceutical Sciences Series, Marcel Dekker Inc., New York, 1996, 77, 89–125.

    Google Scholar 

  26. D. W. Matson, K. A. Norton, and R. D. Smith. Making powders and films from supercritical solutions. CHEMTECH, 8:480–486 (1989).

    Google Scholar 

  27. A. K. Lele and A. D. Shine. Morphology of polymers precipitated from a supercritical solvent. AIChE J. 38:742–752 (1992).

    Google Scholar 

  28. C. J. Chang and A. D. Randolph. Precipitation of microsize organic particles from supercritical fluids. AIChE J. 35:1876–1882 (1989).

    Google Scholar 

  29. D. W. Matson, C. R. Petersen, and R. D. Smith. Production of powders and films by the Rapid Expansion of Supercritical Solutions. J. Mat. Sci. 22:1919–1928 (1987).

    Google Scholar 

  30. J. W. Tom, G. Lim, P. G. Debenedetti, and R. K. Prud'homme. Applications of supercritical fluids in the controlled release of drugs. ACS Symp. Series. 514:238–257 (1993).

    Google Scholar 

  31. J. W. Tom and P. G. Debenedetti. Precipitation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene particles by rapid expansion of supercritical solutions. J. Supercrit. Fluids. 7:9–29 (1994).

    Google Scholar 

  32. J. H. Kim, T. E. Paxton, and D. L. Tomasko. Microencapsulation of naproxen using Rapid Expansion of Supercritical Solutions. Biotechnol Prog. 12:650–661 (1996).

    Google Scholar 

  33. A. Kordikowski, A. P. Schenk, R. M. Van Nielen and C. J. Peters. Volume expansions and vapour-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. J. Supercrit. Fluids. 8:205–216 (1995).

    Google Scholar 

  34. E. Reverchon. Supercritical antisolvent precipitation: Its application to microparticle generation and products fractionation. In Proceedings of the 5 th Meeting on Supercritical Fluids. Materials and Natural products processing. Nice, France, 1998, Tome 1, pp. 221–236.

    Google Scholar 

  35. L. Benedetti, A. Bertucco, and P. Pallado. Production of micronic particles of biocompatible polymer using supercritical carbon dioxide. Biotechnol. Bioeng. 53:232–237 (1997).

    Google Scholar 

  36. A. Bertucco, P. Pallado, and L. Benedetti. Formation of biocompatible polymer polymer microspheres for controlled drug delivery by a supercritical antisolvent technique. In Ph. R. Von Rohr and Ch. Trepp (eds.), Process Technology Procedings, 12, High Pressure Chemical Engineering, Elsevier, Netherlands, 1996, pp. 217–222.

    Google Scholar 

  37. F. E. Wubbolts, C. Kersch, and V. Rosmalen. Semi-batch precipitation of acetaminophen from ethanol with liquid carbon dioxide at a constant pressure. In Proceedings of the 5 th Meeting on Supercritical Fluids. Materials and natural products processing. Nice, France, 1998, Tome 1, pp. 249–256.

    Google Scholar 

  38. D. J. Dixon, K. P. Johnston, and R. A. Bodmeier. Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE J. 39:127–139 (1993).

    Google Scholar 

  39. E. Kiran and W. Zhuang. Miscibility and phase separation of polymers in near-and supercritical fluids. ACS Symposium Series. 670:2–36 (1997).

    Google Scholar 

  40. S. D. Yeo, G. Lim, P. G. Debenedetti, and H. Bernstein. Formation of microparticulate protein powders using a supercritical fluid antisolvent. Biotechnol. Bioeng. 41:341–346 (1993).

    Google Scholar 

  41. P. R. Sassiat, P. Mourier, M. H. Caude, and R. H. Rosset. Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang. Anal. Chem. 59:1164–1170 (1987).

    Google Scholar 

  42. T. W. Randolph, A. D. Randolph, M. Mebes, and S. Yeung. Sub micrometer sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process. Biotechnol. Progr. 9:429–435 (1993).

    Google Scholar 

  43. S. Mawson, S. Kanakia, and K. P. Johnston. Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent. J. Appl. Pol. Sci. 64:2105–2118 (1997).

    Google Scholar 

  44. R. E. Treybal. Mass transfer operations. McGraw Hill, USA, 1980.

    Google Scholar 

  45. M. Hanna and P. York. Method and apparatus for the formation of particles. Patent No: PCT/GB94/01426. 1994.

  46. M. Hanna and P. York. Particle engineering by supercritical fluid technologies for powder inhalation drug delivery. In Proceedings of Respiratory Drug Delivery V, Pheonix, USA, 1996, pp. 231–239.

  47. M. Hanna, P. York, and B. Y. Shekunov. Control of the polymorphic forms of a drug substance by solution enhanced dispersion by supercritical fluids (SEDS). In Proceedings of the 5 th Meeting on Supercritical Fluids. Materials and natural products processing. Nice, France, 1998, Tome 1, pp. 325–330.

    Google Scholar 

  48. S. Jaarmo, M. Rantakyla, and O. Aaltonen. Particle tailoring with supercritical fluids: Production of amorphous pharmaceutical particles. In Proceedings of the 4 th International Symposium on Supercritical Fluids, Sendai, Japan, 1997, pp. 263–266.

  49. S. Palakodaty, M. Hanna, P. York, D. Rudd, and J. Pritchard. Particle formation using Supercritical fluids—A novel approach. In Proc. 1997 ICheME Event, UK. ISBN: 0 85295 389 5, 1:501–504 (1997).

    Google Scholar 

  50. M. Hanna and P. York. Method and apparatus for the formation of particles. Patent No.: PCT/GB95/01523. 1995.

  51. R. Sloan, M. E. Hollowood, W. Ashraf, P. York, and G. O. Humphreys. Supercritical fluid processing: Preparation of stable protein particles. In Proceedings of the 5 th Meeting on Supercritical Fluids. Materials and natural products processing. Nice, France, 1998, Tome 1, pp. 301–306.

    Google Scholar 

  52. S. Palakodaty, J. Pritchard, P. York, and M. Hanna. Crystallisation of lactose using solution enhanced dispersion by supercritical fluid (SEDS) technique. In Proceedings of the 5 th Meeting on Supercritical Fluids. Materials and natural products processing. Nice, France, 1998, Tome 1, pp. 275–280.

    Google Scholar 

  53. Palakodaty, P. York, and J. Pritchard. Supercritical fluid processing of materials from aqueous solutions: The application of SEDS to lactose as a model substance. Pharm. Res. In press. (1998).

  54. E. Weidner, R. Steiner, and Z. Knez. Powder generation from polyethyleneglycols with compressible fluids. In Ph. R. Von Rohr and Ch. Trepp (eds.), Process Technology Procedings 12, High Pressure Chemical Engineering, Elsevier, Netherlands, 1996, pp. 223–228.

    Google Scholar 

  55. S. Srcic, P. Sencar-Bozic, Z. Knez, and J. Kerc. Improvement of nifedipine dissolution characteristics using supercritical CO2. Proceedings of the 16 th Pharmaceutical Technology Conference and Exhibition, Athens, Greece. 1997, pp. 59–69.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Palakodaty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palakodaty, S., York, P. Phase Behavioral Effects on Particle Formation Processes Using Supercritical Fluids. Pharm Res 16, 976–985 (1999). https://doi.org/10.1023/A:1011957512347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011957512347

Navigation