Skip to main content
Log in

Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The high aqueous solubility of ionic compounds can be attributed to the ease of solvation of the counter ions. Replacement of the counter ions with ionic detergents dramatically alters the solubility properties of the molecule. Not only does the aqueous solubility drop precipitously, but the solubility in organic phases increases as well. Consequently, the partition coefficient changes by orders of magnitude. This ion pairing phenomenon, which we term hydrophobic ion pairing (HIP), has been extended to polyelectrolytes, such as proteins and polynucleotides. These materials form HIP complexes that dissolve in a range of organic solvents, often with retention of native structure and enzymatic activity. The HIP process has been used to purify protein mixtures, conduct enzymatic reactions in nonaqueous environments, increase structural stability, enhance bioavailability, and prepare new dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. N. V. Katre. The conjugation of proteins with polyethylene glycol and other polymers. Altering properties of proteins to enhance their therapeutic potential. Adv. Drug Del. Rev. 10:91–114 (1993).

    Google Scholar 

  2. S. A. Khan, P. J. Halling, J. A. Bosley, A. H. Clark, A. D. Peilow, E. G. Pelan, and D. W. Rowlands. Polyethylene glycol-modified subtilisin forms microparticulate suspensions in organic solvents. Enzyme Microb. Technol. 14:96–100 (1992).

    Google Scholar 

  3. P.-O. Hegg. Precipitation of egg white proteins below their isoelectric points by sodium dodecyl sulphate and temperature. Biochim. Biophys. Acta 579:73–87 (1979).

    Google Scholar 

  4. F. W. Putnam and H. Neurath. The precipitation of proteins by synthetic detergents. J. Am. Chem. Soc. 66:692–698 (1944).

    Google Scholar 

  5. D. K. Igou, J.-T. Lo, and D. S. Clark. On the nature of interaction of dodecyl sulfate with proteins. Evidence from uncharged polypeptides. Biochem. Biophys. Res. Commun. 60:140–145 (1974).

    Google Scholar 

  6. R. Pitt-Rivers and F. S. A. Impoimbato. The binding of sodium dodecyl sulphate to various proteins. Biochem. J. 109:825–830 (1968).

    Google Scholar 

  7. Y. Okahata, Y. Fujimoto, and K. Ijiro. Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Lett. 29:5133–5134 (1988).

    Google Scholar 

  8. W. Tsuzuki, Y. Okahata, O. Katayama, and T. Suzuki. Preparation of organic solvent-soluble enzyme (Lipase B) and characterization by gel permeation chromatography. J. Chem. Soc., Perkin Trans. I: 1245–1247 (1991).

    Google Scholar 

  9. J. Gautam and H. Schott. Interaction of anionic compounds with gelatin. I: binding studies. J. Pharm. Sci. 83:922–930 (1994).

    Google Scholar 

  10. M. Adachi and M. Harada. Solubilization mechanism of cytochrome c in sodium bis(2-ethylhexyl) sulfosuccinate water/oil microemulsion. J. Phys. Chem. 97:3631–3640 (1993).

    Google Scholar 

  11. T. Arakawa, J. Philo, and W. C. Kenney. Structure and solubility of interleukin-2 in sodium dodecyl sulfate. Int. J. Peptide Protein Res. 83:583–587 (1994).

    Google Scholar 

  12. M. E. Powers, J. Matsuura, J. Brassell, M. C. Manning, and E. Shefter. Enhanced solubility of proteins and peptides in nonpolar solvents through hydrophobic ion pairing. Biopolymers. 33:927–932 (1993).

    Google Scholar 

  13. J. Matsuura, M. E. Powers, M. C. Manning, and E. Shefter. Structure and Stability of Insulin Dissolved in 1-Octanol. J. Am. Chem. Soc. 115:1261–1264 (1993).

    Google Scholar 

  14. J. D. Meyer, J. E. Matsuura, B. S. Kendrick, E. S. Evans, G. J. Evans, and M. C. Manning. Solution behavior of α-Chymotrypsin dissolved in nonpolar solvents via hydrophobic ion pairing. Biopolymers. 35:451–456 (1995).

    Google Scholar 

  15. V. M. Paradkar and J. S. Dordick. Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of Aerosol OT in the absence of reverse micelles. Biotechnol. Bioeng. 43:529–540 (1994).

    Google Scholar 

  16. V. M. Paradkar and J. S. Dordick. Aqueous-like activity of alpha-chymotrypsin dissolved in nearly anhydrous organic solvents. J. Am. Chem. Soc. 116:5009–5010 (1994).

    Google Scholar 

  17. L. E. Bromberg and A. M. Klibanov. Detergent-enabled transport of proteins and nucleic acids through hydrophobic solvents. Proc. Natl. Acad. Sci. USA 91:143–147 (1994).

    Google Scholar 

  18. V. A. Kabakov, A. B. Zezin, V. G. Sergeyev, O. A. Pyshkina, and I. V. Yaminsky. Complex of DNA with oppositely charged ionic surfactants: solution behavior in water and low polarity organic solvents. Proceedings of the Utah Drug Delivery Conference, February 24–27, Salt Lake City, UT, pp. 250–251 (1997).

  19. J.-Y. Legendre and F. C. Szoka, Jr. Cyclic amphipathic peptide-DNA complexes mediate high efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA 90:893–897 (1993).

    Google Scholar 

  20. F. M. P. Wong, D. L. Reimer, and M. B. Bally. Cationic lipid binding to DNA: characterization of complex formation. Biochemistry 35:5756–5763 (1996).

    Google Scholar 

  21. J. D. Meyer, B. S. Kendrick, J. E. Matsuura, J. A. Ruth, P. N. Bryan, and M. C. Manning. Generation of soluble and active subtilisin and alpha-chymotrypsin in organic solvents via hydrophobic ion pairing. Int. J. Peptide Protein Res. 47:177–181 (1996).

    Google Scholar 

  22. B. Kendrick, J. Meyer, J. Matsuura, J. F. Carpenter, and M. C. Manning. Hydrophobic ion pairing (HIP) subtilisin BPN' results in structural stabilization and increased activity in isooctane and ethanol. Pharm. Res. 12:S-97 (1995).

    Google Scholar 

  23. P. P. Wangikar, P. C. Michels, D. S. Clark, and J. S. Dordick. Structure and function of subtilisin BPN' solubilized in organic solvents. J. Am. Chem. Soc. 119:70–76 (1997).

    Google Scholar 

  24. P. Wang, M. V. Sergeeva, L. Lim, and J. S. Dordick. Biocatalytic plastics as active and stable materials for biotransformations. Nature Biotechnology 15:789–793 (1997).

    Google Scholar 

  25. M. V. Sergeeva, V. M. Paradkar, and J. S. Dordick. Peptide synthesis using proteases dissolved in organic solvents. Enzyme Microb. Technol. 20:623–628 (1997).

    Google Scholar 

  26. J. D. Meyer, J. E. Matsuura, J. A. Ruth, E. Shefter, S. T. Patel, J. Bausch, E. McGonigle, and M. C. Manning. Selective precipitation of interleukin-4 using hydrophobic ion pairing: A method for improved analysis of proteins formulated with excesses of human serum albumin. Pharm. Res. 11:1492–1495 (1994).

    Google Scholar 

  27. M. M. McShane, C. A. Kruske, S. R. Davio, K. F. Wilkinson, B. D. Rush, and M. J. Ruwart. The effect of aqueous solubility on the absorption of peptide-like drugs from the subcutaneous (SC) Site. Pharm. Res. 11:S-246 (1994).

    Google Scholar 

  28. K. Trimble, J. Wan, and B. Floy. Effects of ion pairing agents on partition coefficient, tissue uptake, and membrane permability of LHRH analogues. Pharm. Res. 10:S-178 (1993).

    Google Scholar 

  29. S. Matschiner, R. Neubert, and W. Wohlrab. Use of ion-pairing to optimize erythromycin penetration from topical formulations. Proc. Int. Symp. Control. Rel. Bioact. Mater. 21:698–699 (1994).

    Google Scholar 

  30. K. Takahasji, T. Murakami, R. Yumoto, T. Hattori, Y. Higashi, and N. Yata. Decanoic acid induced enhancement of rectal absorption of hydrophilic compounds in rats. Pharm. Res. 11:1401–1404 (1994).

    Google Scholar 

  31. L. Y. Wang, W. F. Pan, J. H. K. Ma, and R. Rojanasakul. Alteration of alveolar epithelium permeability by oleic acid and related fatty acids: evidence for a calcium-dependent mechanism. Pharm. Res. 10:S-207 (1993).

    Google Scholar 

  32. B. J. Aungst and M. A. Hussain. Sustained propranolol delivery and increased oral bioavailability in dogs given propanolol laurate salt. Pharm. Res. 9:1507–1509 (1992).

    Google Scholar 

  33. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm. 117:243–246 (1995).

    Google Scholar 

  34. T. Lindmark and P. Artursson. Influence of osmolality on the absorption enhancing effect of three medium chain fatty acids in human intestinal epithelial (Caco-2) cells. Pharm. Res. 10:S-182 (1993).

    Google Scholar 

  35. A. K. Anderberg and P. Artursson. Epithelial transport of drugs in cell culture. VII. Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 82:392–398 (1993).

    Google Scholar 

  36. A. K. Anderberg, T. Lindmark, and P. Artursson. Sodium caprate elicits dilations in human intestinal tight junctions by the paracellular route. Pharm. Res. 10:857–864 (1993).

    Google Scholar 

  37. L. N. Bell, M. J. Hageman, and J. M. Bauer. Impact of moisture on thermally induced denaturation and decomposition of lyopholized bovine somatotropin. Biopolymers. 35:201–209 (1995).

    Google Scholar 

  38. N. A. Turner, D. B. Duchatueau, and E. N. Vulfson. Effect of hydration on thermostability. Biotechnology Letters. 17:371–376 (1995).

    Google Scholar 

  39. L. S. Gorman and J. S. Dordick. Organic solvents strip water off enzymes. Biotechnol. Bioeng. 39:392–397 (1992).

    Google Scholar 

  40. A. L. Adjei, H. S. Cheskin, M. K. Vadnere, E. Bush, and E. S. Johnson. Pharmaceutical compositions for oral administration. PCT Int. Appl. WO 90 08,537; 09 Aug 1990.

  41. A. L. Adjei, R. B. Doyle, and S. Borodkin. Nonaqueous oil-based pharmaceutical suspensions for water-sensitive active agents. Eur. Pat. Appl. EP 310,801; 12 Apr 1989.

  42. A. L. Adjei, J. W. Kesterson, and E. S. Johnson. Luteinizing hormone-releasing factor analog containing aerosol formulations. Eur. Pat. Appl. EP 275,404; 27 Jul 1988.

  43. A. Adjei, S. Rao, G. Menon, and M. Vadnere. Effect of ion-pairing on 1-octanol partitioning of peptide drugs. I. The nonapeptide leuprolide acetate. Int. J. Pharm. 90:141–149 (1993).

    Google Scholar 

  44. R. F. Falk, T. W. Randolph, J. D. Meyer, R. M. Kelly, and M. C. Manning. Controlled release of ionic pharmaceuticals from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent, J. Controlled Rel. 44:77–85 (1997).

    Google Scholar 

  45. R. Bodmeier, H. Wang, D. J. Dixon, S. Mawson, and K. P. Johnston. Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm. Res. 12:1211–1217 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J.D., Manning, M.C. Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules. Pharm Res 15, 188–193 (1998). https://doi.org/10.1023/A:1011998014474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011998014474

Navigation