Skip to main content
Log in

Chemical Pathways of Peptide Degradation. III. Effect of Primary Sequence on the Pathways of Deamidation of Asparaginyl Residues in Hexapeptides

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Deamidation of Asn residues can occur either by direct hydrolysis of the Asn residue or via a cyclic imide intermediate. The effects of primary sequence on the pathways of deamidation of Asn residues were studied using Val-Tyr-X-Asn-Y-Ala hexapeptides with substitution on the C-terminal side (Y) and on the N-terminal side (X) of the Asn residue. In acidic media the peptides deamidate by direct hydrolysis of the Asn residue to yield only Asp peptides, whereas under neutral or alkaline conditions, the peptides deamidate by formation of the cyclic imide intermediates which hydrolyze to yield both isoAsp and Asp peptides. At neutral to alkaline pH's the rate of deamidation was significantly affected by the size of the amino acid on the C-terminal side of the Asn residue. The amino acid on the C-terminal side of the Asn residue has no effect on the rate of deamidation at acidic pH. Changes in the structure of the amino acid on the N-terminal side of the Asn residue had no significant effect on the rate of deamidation at all the pH's studied. For peptides that underwent deamidation slowly, a reaction involving the attack of the Asn side chain on the peptide carbonyl carbon resulting in peptide bond cleavage was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Manning, K. Patel, and R. T. Borchardt. Pharm. Res. 6:903–918 (1989).

    Google Scholar 

  2. A. B. Robinson and C. J. Rudd. In B. L. Horecker and E. R. Stadtman (eds.), Current Topics in Cellular Regulations, Vol. 8, Academic Press, New York, 1974, pp. 247–295.

    Google Scholar 

  3. T. Geiger and S. Clarke. J. Biol. Chem. 262:785–794 (1987).

    Google Scholar 

  4. R. C. Stephenson and S. Clarke. J. Biol. Chem. 264:6164–6170 (1989).

    Google Scholar 

  5. S. Capasso, L. Mazzarella, F. Sica, and A. Zagari. Pept. Res. 2:195–200 (1989).

    Google Scholar 

  6. R. Lura and V. Schirch. Biochemistry 27:7671–7677 (1988).

    Google Scholar 

  7. Y. C. Meinwald, E. R. Stimson, and H. A. Scheraga. Int. J. Peptide Protein Res. 28:79–84 (1986).

    Google Scholar 

  8. M. Bodanszky and J. Z. Kwei. Int. J. Peptide Protein Res. 12:69–74 (1978).

    Google Scholar 

  9. I. Schon and L. Kisfaludy. Int. J. Peptide Protein Res. 14:485–494 (1979).

    Google Scholar 

  10. T. Baba, H. Sugiyama, and S. Seto. Chem. Pharm. Bull. 21:207–209 (1973).

    Google Scholar 

  11. S. A. Bernhard, A. Berger, J. H. Carter, E. Katchalski, M. Sela, and Y. Shelitiny. J. Am. Chem. Soc. 84:2421–2434 (1962).

    Google Scholar 

  12. K. Patel and R. T. Borchardt. Pharm. Res. 7:703–711 (1990).

    Google Scholar 

  13. J. Stewart and J. S. Young. In Solid Phase Peptide Synthesis, 2nd ed., Pierce, Rockford, IL, 1984, pp. 71–95.

    Google Scholar 

  14. G. Allen. In T. S. Work and R. H. Burdon (eds.), Sequencing of Proteins and Peptides, North-Holland, Amsterdam, 1981.

    Google Scholar 

  15. E. D. Murray, Jr., and S. Clarke. J. Biol. Chem. 259:10722–10732 (1984).

    Google Scholar 

  16. I. H. Segel. Biochemical Calculations, John Wiley and Sons, New York, 1968.

    Google Scholar 

  17. D. W. Aswad. Anal. Biochem. 137:405–409 (1984).

    Google Scholar 

  18. B. A. Johnson, E. D. Murray, Jr., S. Clarke, D. B. Glass, and D. W. Aswad. J. Biol. Chem. 262:5622–5629 (1987).

    Google Scholar 

  19. C. E. M. Voorter, W. A. de Haard-Hoekman, P. J. M. van den Oetelaar, H. Bloemendal, and W. W. de Jong. J. Biol. Chem. 263:19020–19023 (1988).

    Google Scholar 

  20. A. S. Inglis. Methods. Enzymol. 91:324–332 (1983).

    Google Scholar 

  21. T. J. Ahern and A. M. Klibanov. Science 228:1280–1284 (1985).

    Google Scholar 

  22. S. E. Zale and A. M. Klibanov. Biochemistry 25:5432–5444 (1986).

    Google Scholar 

  23. K. Patel, C. Oliyai, R. T. Borchardt, and M. C. Manning. J. Cell. Biochem. 13A:A318 (1989).

    Google Scholar 

  24. M. A. Ondetti, A. Deer, J. T. Sheehan, J. Pluscec, and O. Kocy. Biochemistry 7:4069–4075 (1968).

    Google Scholar 

  25. A. A. Kossiakoff. Science 240:191–194 (1988).

    Google Scholar 

  26. I. M. Ota, L. Ding, and S. Clarke. J. Biol. Chem. 262:8522–8531 (1987).

    Google Scholar 

  27. I. M. Ota and S. Clarke. Biochemistry 28:4020–4027 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K., Borchardt, R.T. Chemical Pathways of Peptide Degradation. III. Effect of Primary Sequence on the Pathways of Deamidation of Asparaginyl Residues in Hexapeptides. Pharm Res 7, 787–793 (1990). https://doi.org/10.1023/A:1015999012852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015999012852

Navigation