Skip to main content
Log in

Stability of Lidocaine in Aqueous Solution: Effect of Temperature, pH, Buffer, and Metal Ions on Amide Hydrolysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The degradation of lidocaine in aqueous solution obeys the expression k obs = (k H+[H +] + k o ) [H+]/([H + ] + K a + ko K a([H + ] + K a) where k H+ is the rate constant for hydronium ion catalysis, and k o and ko are the rate constants for the spontaneous (or water-catalyzed) reactions of protonated and free-base lidocaine. At 80°C, the rate constants for these processes are 1.31 × 10−7 M −l sec−1, 1.37 × 10−9 sec−1, and 7.02 × 10−9sec−1; the corresponding activation energies are 30.5, 33.8, and 26.3 kcal mol−1, respectively. It was found that the room temperature pH of maximum stability is ∼3–6 and that lidocaine is more reactive in the presence of metal ions such as Fe2+ and Cu2+. The dissociation constant, K a, for lidocaine at 25–80°C was also measured at 0.1 M ionic strength and a plot of pK a versus 1/T gave a slope of (1.88 ± 0.05) × 103 K−1 and intercept 1.56 ± 0.16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. E. Lackner, D. Baldus, C. D. Butler, C. Amyx, and G. Kessler. Am. J. Hosp. Pharm. 40:97–101 (1983).

    Google Scholar 

  2. H. L. Kirschenbaum, W. Aronoff, G. P. Perentesis, G. W. Plitz, and A. J. Cutie. Am. J. Hosp. Pharm. 39:1013–1015 (1982).

    Google Scholar 

  3. F. M. Smith and N. O. Nuessle. Am. J. Hosp. Pharm. 38:1745–1747 (1981).

    Google Scholar 

  4. K. Bullock and J. Grundy. J. Pharm. Pharmacol. 7:755–773 (1955).

    Google Scholar 

  5. S. Goto and T. Itano. Yakugaku Zasshi 99:146–154 (1979).

    Google Scholar 

  6. J. Katz. Anesthesiology 27:835–837 (1966).

    Google Scholar 

  7. E. Zollner and G. Vastagh. Pharm. Zentral. 105:369–372 (1965).

    Google Scholar 

  8. J. Hine, S.-M. King, R. Midden, and A. Sinah. J. Org. Chem. 46:3186–3189 (1981).

    Google Scholar 

  9. T. C. Bruice and F. H. Marquardt. J. Am. Chem. Soc. 84:365–370 (1962).

    Google Scholar 

  10. S. O. Eriksson and J.-O. Omdal. Acta. Pharm. Suec. 1:77–90 (1964).

    Google Scholar 

  11. G. M. Loudon and J. J. Jacob. Chem. Soc. Chem. Commun. 377–378 (1980).

  12. G. M. Loudon, M. R. Almond, and J. N. Jacob. J. Am. Chem. Soc. 103:4508–4515 (1981).

    Google Scholar 

  13. T. Yamana, A. Tsuh, and Y. Mizukami. Chem. Pharm. Bull. 21:721–728 (1973).

    Google Scholar 

  14. H. W. Harned. Physical Chemistry of Electrolyte Solutions, Reingold, New York, 1958.

    Google Scholar 

  15. R. S. Greelet, Anal. Chem. 32:1717 (1960).

    Google Scholar 

  16. A. J. Kresge, H. J. Chen, G. L. Capen, and M. F. Powell. Can. J. Chem. 61:249–256 (1983).

    Google Scholar 

  17. C. H. Rochester. Acidity Functions, Academic Press, New York, 1971.

    Google Scholar 

  18. P. R. Bevington. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 1969.

    Google Scholar 

  19. R. H. Levy and M. J. Rowland. J. Pharm. Pharmacol. 24:841–847 (1972).

    Google Scholar 

  20. H. Kamaya, J. J. Hayes, Jr., and I. Ueda. Anesth. Analg. 62:1025–1030 (1983).

    Google Scholar 

  21. K. A. Wyatt and I. H. Ditman. Aust. J. Pharm. Sci. 8:77–85 (1979).

    Google Scholar 

  22. T. H. Fife and T. J. Przystas. J. Am. Chem. Soc. 108:4631–4636 (1986).

    Google Scholar 

  23. L. Gu. Personal communication.

  24. H. Bundgaard and E. Falch. Int. J. Pharm. 23:223–237 (1985).

    Google Scholar 

  25. T. C. Bruice and S. Benkovic. Bioorganic Mechanisms, W. A. Benjamin, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, M.F. Stability of Lidocaine in Aqueous Solution: Effect of Temperature, pH, Buffer, and Metal Ions on Amide Hydrolysis. Pharm Res 4, 42–45 (1987). https://doi.org/10.1023/A:1016477810629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016477810629

Navigation