Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G-protein-coupled receptors as targets for gene transfer vectors using natural small-molecule ligands

Abstract

Gene therapy for cystic fibrosis (CF) has focused on correcting electrolyte transport in airway epithelia. However, success has been limited by the failure of vectors to attach and enter into airway epithelia, and may require redirecting vectors to targets on the apical membrane of airway cells that mediate these functions. The G-protein-coupled P2Y2 receptor (P2Y2-R) is abundantly expressed on the airway lumenal surface and internalizes into coated pits upon agonist activation. We tested whether a small-molecule-agonist (UTP) could direct vectors to P2Y2-R and mediate attachment, internalization, and gene transfer. Fluorescein-UTP studies demonstrated that P2Y2-R agonists internalized with their receptor, and biotinylated UTP (BUTP) mediated P2Y2-R-specific internalization of fluorescently labeled streptavidin (SAF) or SAF conjugated to biotinylated Cy3 adenoviral-vector (BCAV). BUTP conjugated to BCAV mediated P2Y2-R-specific gene transfer in (1) adenoviral-resistant A9 and polarized MDCK cells by means of heterologous P2Y2-R, and (2) well-differentiated human airway epithelial cells by means of endogenous P2Y2-R. Targeting vectors with small-molecule-ligands to apical membrane G-protein-coupled receptors may be a feasible approach for successful CF gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potency of UTP derivatives for the P2Y2-R.
Figure 2: The P2Y2-R internalizes with its ligand.
Figure 3: P2Y2-R internalizes BUTP conjugates.
Figure 4: BUTP–AdV conjugates mediate gene transfer in nonpolarized A9 cells.
Figure 5: BUTP conjugates internalize and mediate gene transfer in polarized MDCK cells.
Figure 6: BUTP conjugates mediate gene transfer in WD human nasal airway cells.

Similar content being viewed by others

References

  1. Welsh, M.J., Tsui, L-C., Boat, T.F. & Beaudet, A.L. In The metabolic and molecular bases of inherited disease. (ed. Scriver, C.R. et al.) 3799–3876 (McGraw-Hill, Inc., New York, NY; 1995).

    Google Scholar 

  2. Johnson, L.G. et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat. Genet. 2, 21–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, L.G. et al. In vitro assessment of variables affecting the efficiency and efficacy of adenovirus-mediated gene transfer to cystic fibrosis airway epithelia. Hum. Gene Ther. 7, 51–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Boucher, R.C. Current status of CF gene therapy. Trends Genet. 12, 81–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Boucher, R.C. Status of gene therapy for cystic fibrosis lung disease. J. Clin. Invest. 103, 441–445 (1999).

    Article  PubMed Central  Google Scholar 

  6. Grubb, B.R. et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371, 802–806 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Pickles, R.J., Barker, P.M., Ye, H. & Boucher, R.C. Efficient adenovirus-mediated gene transfer to basal but not columnar cells of cartilagenous airway epithelia. Hum. Gene Ther. 7, 921–931 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Perkins, J.P., Hausdorff, W P. & Lefkowitz, R.J. In The β-adrenergic receptors. (ed. Perkins, J.P.) 73–124 (The Humana Press, Totowa, NJ; 1991).

    Google Scholar 

  9. Le Gouill, C., Parent, J.L., Rola-Pleszczynski, M. & Stankova, J. Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J. Biol. Chem. 272, 21289–21295 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Munoz, C.M. & Leeb-Lundberg, L.M.F. Receptor-mediated internalization of bradykinin. DDT1 MF-2 smooth muscle cells process internalized bradykinin via multiple degradative pathways. J. Biol. Chem. 267, 303–309 (1992).

    CAS  PubMed  Google Scholar 

  11. Munoz, C.M., Cotecchia, S. & Leeb-Lundberg, L.M.F. B2 kinin receptor-mediated internalization of bradykinin in DDT1 MF-2 smooth muscle cells is paralleled by sequestration of the occupied receptors. Arch. Biochem. Biophys. 301, 336–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Fukushima, Y. et al. Role of the C terminus in histamine H2 receptor signaling, desensitization, and agonist-induced internalization. J. Biol. Chem. 272, 19464–19470 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Thomas, W.G., Baker, K.M., Motel, T.J. & Thekkumkara, T.J. Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J. Biol. Chem. 270, 22153–22159 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Pohl, M., Silvente-Poirot, S., Pisegna, J.R., Tarasova, N.I. & Wank, S.A. Ligand-induced internalization of cholecystokinin receptors. Demonstration of the importance of the carboxyl terminus for ligand-induced internalization of the rat cholecystokinin type B receptor but not the type A receptor. J. Biol. Chem. 272, 18179–18184 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lazarowski, E.R., Watt, W.C., Stutts, M.J., Boucher, R.C. & Harden, T.K. Pharmacological selectivity of the cloned human P2U-receptor: potent activation by diadenosine tetraphosphate. Br. J. Pharmacol. 116, 1619–1627 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mason, S.J., Paradiso, A.M. & Boucher, R.C. Regulation of transepithelial ion transport and intracellular calcium by extracellular adenosine triphosphate in human normal and cystic fibrosis airway epithelium. Br. J. Pharmacol. 103, 1649–1656 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paradiso, A.M., Mason, S.J., Lazarowski, E.R. & Boucher, R.C. Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature 377, 643–646 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Lazarowski, E.R., Paradiso, A.M., Watt, W.C., Harden, T.K. & Boucher, R.C. UDP activates a mucosal-restricted receptor on human nasal epithelial cells that is distinct from the P2Y2 receptor. Proc. Natl. Acad. Sci. USA 94, 2599–2603 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olivier, K.N. et al. Acute safety and effects on mucociliary clearance of aerosolized uridine 5′-triphosphate +/– amiloride in normal human adults. Am. J. Respir. Crit. Care Med. 154, 217–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Parr, C.E. et al. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. USA 91, 3275–3279 (1994).

    PubMed Central  Google Scholar 

  21. Mayr, G.A. & Freimuth, P. A single locus on human chromosome 21 directs the expression of a receptor for adenovirus type 2 in mouse A9 cells. J. Virol. 71, 412–418 (1999).

    Google Scholar 

  22. Pickles, R.J. et al. Limited entry of adenoviral vectors into well differentiated airway epithelium is responsible for inefficient gene transfer. J. Virol. 72, 6014–6023 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Teramoto, S. et al. Factors influencing adeno-associated virus-mediated gene transfer to human cystic fibrosis airway epithelial cells: comparison with adenovirus vectors. J. Virol. 72, 8904–8912 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsui, H., Johnson, L.G., Randell, S.H. & Boucher, R.C. Loss of binding and entry of liposome–DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J. Biol. Chem. 272, 1117–1126 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Sromek, S.M. & Harden, T.K. Agonist-induced internalization of the P2Y2 receptor. Mol. Pharmacol. 54, 485–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bergelson, J.M. et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G R. Integrins αv β3 and αv β5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Hoganson, D.K. et al. Targeted delivery of DNA encoding cytotoxic proteins through high-affinity fibroblast growth factor receptors. Hum. Gene Ther. 20, 2565–2575 (1998).

    Google Scholar 

  29. Picher, M. & Boucher, R.C. Diadenosine phosphates hydrolysis in human airways [Abstract]. Pediatr. Pulmonol. Suppl. 17, 288 (1998).

    Google Scholar 

  30. Zabner, J., Zeiher, B.G., Friedman, E. & Welsh, M.J. Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time. J. Virol. 70, 6994–7003 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Robinson, G. & Gray, T. In Theory and practice of histological techniques. (eds Bancroft, J.D. & Stevens, A.) 585–627 (Churchill Livingstone, Inc., New York, NY; 1996).

    Google Scholar 

  33. Leopold, P.L. et al. Fluorescent virions: dynamic tracking of the pathway of adenovirus gene transfer vectors in living cells. Hum. Gene Ther. 9, 367–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Arcasoy, S.M. et al. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells. Am. J. Respir. Cell Mol. Biol. 17, 422–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Bals, R. et al. Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J. Virol. 73, 6085–6088 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr. Larry Johnson for helpful discussions during the preparation of the manuscript, Kimberly Burns, Dr. John Carson, and Todd Gambling for the electron microscopy study, and L. Brown for manuscript editing. This work was supported by NIH grants HL34322 and HL51818 and CF Foundation grant S880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia M. Kreda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreda, S., Pickles, R., Lazarowski, E. et al. G-protein-coupled receptors as targets for gene transfer vectors using natural small-molecule ligands. Nat Biotechnol 18, 635–640 (2000). https://doi.org/10.1038/76479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing