Skip to main content

Advertisement

Log in

Protein aggregation and bioprocessing

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Protein aggregation is a common issue encountered during manufacture of biotherapeutics. It is possible to influence the amount of aggregate produced during the cell culture and purification process by carefully controlling the environment (eg, media components) and implementing appro-priate strategies to minimize the extent of aggregation. Steps to remove aggregates have been successfully used at a manufacturing scale. Care should be taken when developing a process to monitor the compatibility of the equipment and process with the protein to ensure that potential aggregation is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. US Pharmacopeia. USP/NF General Chapter<788> Particulate Matter in Injections. In: U.S. Pharmacopeia, ed.National Formulary, USP29-NF-24 (suppl 2). Rockville, MD: USP; 2006.

    Google Scholar 

  2. Andya JD, Hsu CC, Shire SJ. Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations.AAPS PharmSci. 2003;5:E10.

    Article  PubMed  Google Scholar 

  3. Shahrokh Z, Sluzky V, Stratton PR, Eberlein GA, Wang YJ. Disulfide-linked oligomerization of basic fibroblast growth factors: effect of sulfated compounds. In:Formulation and Delivery of Proteins and Peptides, ACS Symposium Series 567. Washington, DC: American Chemical Society, 1994:85–99.

    Chapter  Google Scholar 

  4. Creed D. The photophysics and photochemistry of the near-UV absorbing amino acids. II. Tyrosine and its simple derivatives.Photochem Photobiol. 1984;39:563–575.

    Article  CAS  Google Scholar 

  5. Giulivi C, Davies KJA. Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. In: Packer L, ed.Methods in Enzymology. vol. 233. New York, NY: Academic Press; 1994:363–371.

    Google Scholar 

  6. Moore JM, Patapoff TW, Cromwell MEM. Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor.Biochemistry. 1999;38:13960–13967.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution.J Pharm Sci. 2005;94:1928–1940.

    Article  CAS  PubMed  Google Scholar 

  8. Maislos M, Bialer M, Mead PM, Robbins DC. Pharmacokinetic model of circulating covalent aggregates of insulin.Diabetes. 1988;37:1059–1063.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg AS. Effects of protein aggregates: an immunologie perspective.AAPS J. 2006;8:E501-E507.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fernández A. What factor drives the fibrillogenic association of β-sheets?FEBS Lett. 2005;579:6635–6640.

    Article  PubMed  Google Scholar 

  11. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation.Pharm Res. 2003;20:1325–1336.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P. Protein aggregation during overexpression limited by peptide extensions with large net negative change.Protein Expr Purif. 2004;36:207–216.

    Article  CAS  PubMed  Google Scholar 

  13. Freimuth P, Springer K, Berard C, Hainfeld J, Bewley M, Flanagan J. Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12.J Virol. 1999;73:1392–1398.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frand AR, Cuozzo JW, Kaiser CA. Pathways for protein disulphide bond formation.Trends Cell Biol. 2000;10:203–210.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Czupryn MJ. Free sulfhydryl in recombinant monoclonal antibodies.Biotechnol Prog. 2002;18:509–513.

    Article  PubMed  Google Scholar 

  16. Chaderjian WB, Chin ET, Harris RJ, Etcheverry TM. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed.Biotechnol Prog. 2005;21:550–553.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips J, Drumm A, Harrison P, et al. Manufacture and quality control of CAMPATH-1 antibodies for clinical trials.Cytotherapy. 2001;3:233–242.

    Article  CAS  PubMed  Google Scholar 

  18. Ejima D, Yumioka R, Tsumoto K, Arakawa T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography.Anal Biochem. 2005;345:250–257.

    Article  CAS  PubMed  Google Scholar 

  19. Ansaldi D, Lester P, inventors. Genentech, Inc., assignee. Separation of polypeptide monomers. US patent 6 620 918. September 16, 2003.

  20. van Reis R, Zydney A. Membrane separations in biotechnology.Curr Opin Biotechnol. 2001;12:208–211.

    Article  PubMed  Google Scholar 

  21. Harris RJ, Shire SJ, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies.Drug Dev Res. 2004;61:137–154.

    Article  CAS  Google Scholar 

  22. van Reis R, Goodrich EM, Yson CL, Frautschy LN, Dzengeleski S, Lutz H. Linear scale ultrafiltration.Biotechnol Bioeng. 1997;55:737–746.

    Article  PubMed  Google Scholar 

  23. Wan Y, Vasan S, Ghosh R, Hale G, Cui Z. Separation of monoclonal antibody alemtuzumab monomer and dimers using ultrafiltration.Biotechnol Bioeng. 2005;90:422–432.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. M. Cromwell.

Additional information

Published: September 15, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cromwell, M.E.M., Hilario, E. & Jacobson, F. Protein aggregation and bioprocessing. AAPS J 8, 66 (2006). https://doi.org/10.1208/aapsj080366

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080366

Keywords

Navigation