Points to Consider: Best Practices to Identify Particle Entry Routes along the Manufacturing Process for Parenteral Formulations

PDA J Pharm Sci Technol. 2019 Nov-Dec;73(6):635-647. doi: 10.5731/pdajpst.2019.010645. Epub 2019 Aug 16.

Abstract

During the processes involved in pharmaceutical manufacturing, particulate matter may be introduced into a product from a variety of sources and at different points in the manufacturing process. Companies design quality at the beginning of the process to ensure against defects and strive to manufacture products that meet the pharmacopeial standard of being "practically/essentially free" of particles, which can be challenging, though necessary. As particulate matter recalls are predominantly associated with parenteral products, most companies employ a quality risk management program to identify critical parameters or conditions that could affect product quality or patient safety and incorporate systemic and procedural controls to mitigate or reduce the probability of their occurrence. Yet, determining where particulates are most likely to enter the process, what types of materials are most vulnerable, and how the size and number of particles might affect product quality can be very complex. Visual inspection and sampling of the manufactured drug product are designed to control the risk of particulate contamination; building prevention controls will ensure sustainability. This concept paper highlights the necessity of a more thorough understanding of the failure mechanisms that result in particle contamination across a range of products, such as elastomeric components and glass, and processes, such as the formulation and filling of injectables. The goal is to identify process steps within the end-to-end manufacturing process that are most critical to particle generation and entering of visible particles into the final drug product.LAY ABSTRACT: This concept paper highlights the necessity of a more thorough understanding of the failure mechanisms that result in particle contamination across a range of products, such as elastomeric components and glass, and processes, such as the formulation and filling of injectables. The goal is to identify process steps within the end-to-end manufacturing process that are most critical to particle generation and entering of visible particles into the final drug product.

MeSH terms

  • Drug Contamination / prevention & control*
  • Drug Industry / methods*
  • Drug Industry / standards
  • Humans
  • Injections
  • Particle Size
  • Particulate Matter / chemistry
  • Risk Management / methods*
  • Technology, Pharmaceutical / methods*

Substances

  • Particulate Matter