Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryPoster Abstract

Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design

Scott Lovald, Chris Berkey, Nikita Pak, Maysam Gorji and Andrew Rau
PDA Journal of Pharmaceutical Science and Technology July 2024, 78 (4) 518-519; DOI: https://doi.org/10.5731/pdajpst.2024.012970
Scott Lovald
Exponent, San Francicso, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: slovald@exponent.com
Chris Berkey
Exponent, San Francicso, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikita Pak
Exponent, San Francicso, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maysam Gorji
Exponent, San Francicso, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Rau
Exponent, San Francicso, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The mechanics of microneedle insertion have thus far been studied in a limited manner. Previous work has focused on buckling and failure of microneedle devices, while providing little insight into skin deformation, puncture, and the final positioning of needle tips under full microneedle arrays. The current study aims to develop a numerical approach capable of evaluating deformation and puncture conditions for full microneedle array designs. The analysis included a series of finite element submodels used to calibrate the microneedle-epidermal interface for failure properties using traction-separation laws. The single needle model is validated using experimental data and imaging, including results from a customized nanoindentation procedure to measure loads and displacements during microneedle insertion. Upon validation, full microneedle arrays are implemented in a 3 D finite element model and a design framework is developed, allowing evaluation of different design variables (i.e. needle shape, material, spacing) with respect to outputs relevant to successful microneedle performance. Results from the model include skin deformation, force to puncture, penetration depth, and the punctured state at each microneedle tip. In addition to microneedle parameters, patient parameters such as subcutaneous tissue thickness are included to evaluate the sensitivity of different microneedle designs to expected patient and anatomical region variability.

  • © PDA, Inc. 2024
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 78 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 78, Issue 4
July/August 2024
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design
Scott Lovald, Chris Berkey, Nikita Pak, Maysam Gorji, Andrew Rau
PDA Journal of Pharmaceutical Science and Technology Jul 2024, 78 (4) 518-519; DOI: 10.5731/pdajpst.2024.012970

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Finite Element Analysis of Skin Deformation and Puncture for Microneedle Array Design
Scott Lovald, Chris Berkey, Nikita Pak, Maysam Gorji, Andrew Rau
PDA Journal of Pharmaceutical Science and Technology Jul 2024, 78 (4) 518-519; DOI: 10.5731/pdajpst.2024.012970
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Per- and Polyfluoroalkyl Substances (PFAS) in Primary Packaging and the Proposed Ban in the European Union
  • Multiphysics Simulation of Needle Clogging in Pre-Filled Syringes
  • Application of Modeling as a Tool for Early Derisking of Parenteral Delivery, from the Primary Container to the Tissue
Show more Poster Abstract

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire