Abstract
Approaches used to avoid uptake of the injected particles by the reticuloendothelial system include modification of the particle properties such as surface charge and particle size. In the present study the effect of mean particle size of etoposide-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of sizes 105 nm (99mTc-Eto-PLGA NP105) and 160 nm (99mTc-Eto-PLGA NP160) on biodistribution and blood clearance were studied after intravenous administration of the radiolabeled formulations and compared to that of free drug (99mTc-Eto). It was found that etoposide-loaded PLGA NPs of size 105 nm were present in the blood at higher concentrations up to 24 h and were able to reduce their uptake by the reticuloendothelial system as compared to that of etoposide-loaded PLGA NPs of size 160 nm and pure drug. Moreover, the pure drug (99mTc-Eto) did not cross the blood-brain barrier, whereas 99mTc-Eto-PLGA NP105 showed relatively high concentrations of 0.58% of injected dose in brain in 1 h (8-fold higher), 0.6% in 4 h (20-fold higher) and 0.22% in 24 h (10-fold higher) than the concentration of 99mTc-Eto-PLGA NP160. In bone, concentration of 99mTc-Eto-PLGA NP105 was about 7.2 times higher than the concentration of 99mTc-Eto in 24 h. The study concludes that NPs of size ∼100 nm can be used for long-term circulation without the need for surface modification. Such NPs could be exploited for use in leukemia therapy for providing sustained release of etoposide by long-term circulation.
LAY ABSTRACT: Approaches used to avoid uptake of the injected particles by the reticuloendothelial system include modification of the particle properties such as surface charge and particle size. In the present study the effect of mean particle size of etoposide-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of sizes 105 nm and 160 nm on biodistribution studies after intravenous administration in mice and blood clearance studies after intravenous administration in rats was studied. It was found that etoposide-loaded PLGA-NPs of size 105 nm were present in the blood at higher concentrations up to 24 h and were able to reduce their uptake by the reticuloendothelial system as compared to that of etoposide-loaded PLGA-NP of size 160 nm and pure drug. Moreover, the NPs of size 105 nm had greater uptake in bone and brain, in which concentration of free drug and NPs of size 160 nm was negligible. The study concludes that NPs of size ∼100 nm can be used for long-term circulation without the need for surface modification.
- ©PDA, Inc. 2011
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.