Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead

Sia Chong Hock, Yan Mei Ying and Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology March 2011, 65 (2) 177-195;
Sia Chong Hock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yan Mei Ying
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chan Lai Wah
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: phaclw@nus.edu.sg
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Bawa R.,
    2. Bawa S. R.,
    3. Maebius S. T.,
    4. Flinn T.,
    5. Wei C.
    Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 2005, 1 (2),150–158
    OpenUrlPubMed
  2. 2.↵
    1. Nijhara R.,
    2. Balakrishnan K.
    Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine 2006, 2 (2),127– 136
    OpenUrlPubMed
  3. 3.↵
    1. Helmus M. N.
    The need for rules and regulations. Nature Nanotechnology 2007, 2, 333– 334
    OpenUrlPubMed
  4. 4.↵
    1. Chan V. S. W.
    Nanomedicine: An unresolved regulatory issue. Regulatory Toxicology and Pharmacology 2006, 46 (3),218– 224
    OpenUrlPubMed
  5. 5.↵
    1. Bogunia-Kubik K.,
    2. Sugisaka M.
    From molecular biology to nanotechnology and nanomedicine. Biosystems 2002, 65 (2–3),123–138
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Freitas J. R. A
    What is nanomedicine? Nanomedicine 2005, 1 (1),2–9
    OpenUrlPubMed
  7. 7.↵
    1. Vega-Villa K. R.,
    2. et al.
    Clinical toxicities of nanocarrier systems. Advanced Drug Delivery Reviews 2008, 60 (8),929– 938
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. Yih T. C.,
    2. Wei C.
    Nanomedicine in cancer treatment. Nanomedicine 2005, 1 (2),191– 192
    OpenUrlPubMed
  9. 9.↵
    1. Moore R.
    Nanomedicine, why is it different? NANO Magazine 2009, Dec 14 (Issue 8). available from http://www.nano.org.uk/articles/index.php?article=25 (accessed Dec 2009).
  10. 10.↵
    1. Mornet S.,
    2. et al.
    Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry 2006, 34 (2–4),237–247
    OpenUrl
  11. 11.↵
    1. Nicholls H.
    Solving insoluble drug delivery. Drug Discovery Today 2003, 8 (14),612–612
    OpenUrlPubMed
  12. 12.↵
    1. Rasenack N.,
    2. Muller B. W.
    Micron-size drug particles: common and novel micronization techniques. Pharmaceutical Development and Technology 2004, 9 (1),1– 13
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Labhasetwar V.
    Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Current Opinion in Biotechnology 2005, 16 (6),674– 680
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Wei C.,
    2. Yamato M.,
    3. Wei W.,
    4. Zhao X.,
    5. Tsumoto K.,
    6. Yoshimura T.,
    7. Ozawa T.,
    8. Chen Y. J.
    Genetic Nanomedicine and Tissue Engineering. Medical Clinics of North America 2007, 91 (5),889– 898
    OpenUrlPubMed
  15. 15.↵
    1. Park J. H.,
    2. Lee S.,
    3. Kim J.-H.,
    4. Park K.,
    5. Kim K.,
    6. Kwon I. C.
    Polymeric nanomedicine for cancer therapy. Progress in Polymer Science 2008, 33 (1),113– 137
    OpenUrl
  16. 16.↵
    1. Kabanov A. V.,
    2. Gendelman H. E.
    Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Progress in Polymer Science 2007, 32 (8–9),1054–1082
    OpenUrlPubMed
  17. 17.↵
    1. Tong R. T.,
    2. Boucher Y.,
    3. Kozin S. V.,
    4. Winkler F.,
    5. Hicklin D. J.,
    6. Jain R. K.
    Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64 (11),3731–6
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Brewer M.,
    2. Zhang T.,
    3. Dong W.,
    4. Rutherford M.,
    5. Tian Z. R.
    Future approaches of nanomedicine in clinical science. Medical Clinics of North America 2007, 91 (5),963–1016
    OpenUrlPubMed
  19. 19.↵
    1. Rannard S.,
    2. Owen A.
    Nanomedicine: not a case of “one size fits all.” Nano Today 2009, 4 (5),382– 384
    OpenUrl
  20. 20.↵
    1. Bawarski W. E.,
    2. Chidlowsky E.,
    3. Bharali D. J.,
    4. Mousa S. A.
    Emerging nanopharmaceuticals. Nanomedicine 2008, 4 (4),273– 282
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Zuo L.,
    2. Wei W.,
    3. Morris M.,
    4. Wei J.,
    5. Gorbounov M.,
    6. Wei C.
    New technology and clinical applications of nanomedicine. Medical Clinics of North America 2007, 91 (5),845– 862
    OpenUrlPubMed
  22. 22.↵
    1. Lockman P.,
    2. Mumper R. J.,
    3. Khan M. A.,
    4. Allen D. D.
    Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. 2002, 28, 1– 13
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Kamiya S.,
    2. Kurita T.,
    3. Miyagishima A.,
    4. Itai S.,
    5. Arakawa M.
    Physical properties of griseofulvin-lipid nanoparticles in suspension and their novel interaction mechanism with saccharide during freeze-drying. European Journal of Pharmaceutics and Biopharmaceutics. In press.
  24. 24.↵
    1. Muller R. H.,
    2. Keck C. M.
    Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology 2004, 113 (1–3),151–170
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Musthaba S. M.,
    2. Baboota S.,
    3. Ahmed S.,
    4. Ahuja A.,
    5. Ali J.
    Status of novel drug delivery technology for phytotherapeutics. Expert Opinion on Drug Delivery 2009, 6 (6),625– 637
    OpenUrlPubMed
  26. 26.↵
    1. Jacobs C.,
    2. Muller R. H.
    Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm. Res. 2002, 19 (2),189– 194
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Farokhzad O. C.,
    2. Langer R.
    Nanomedicine: developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews 2006, 58 (14),1456– 1459
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Arunkumar N.,
    2. Deecaraman M.,
    3. Rani C.
    Nanosuspension technology and its applications in drug delivery. Asian Journal of Pharmaceutics 2009, 3 (3),168– 173
    OpenUrl
  29. 29.↵
    1. Moghimi S. M.,
    2. Hunter A. C.,
    3. Murray J. C.
    Nanomedicine: current status and future prospects. The FASEB Journal 2005, 19, 311– 330
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    The Royal Society and the Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. 2004; available from www.nanotec.org.uk/finalReport.htm (accessed Dec 2009).
  31. 31.↵
    1. Hagens W. I.,
    2. Oomen A. G.,
    3. de Jong W. H.,
    4. Cassee F. R,
    5. Sips A. J.
    What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology 2007, 49 (3),217– 229
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Brown D. M.,
    2. Wilson M. R.,
    3. MacNee W.,
    4. Stone V.,
    5. Donaldson K.
    Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191– 199
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Park K.,
    2. Lee D.,
    3. Rai A.,
    4. Mukherjee D.,
    5. Zachariah M. R.
    Size-resolved kinetic measurements of aluminium nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem., B 2005, 109 (15),7290– 7299
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Maynard A. D.
    Nanotechnology: the next big thing or much ado about nothing? Ann. Occup. Hyg. 2007, 51 (1),1– 12
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Busuttil K.
    Delivering a lethal dose: nanomedicine. Nano Today 2007, 2 (5),10– 10
    OpenUrl
  36. 36.↵
    1. Panyam J.,
    2. Dali M. M.,
    3. Sahoo S. K.,
    4. Ma W.,
    5. Chakravarthi S. S.,
    6. Amidon G. L.,
    7. Levy R. J.,
    8. Labhasetwar V.
    Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Journal of Controlled Release 2003, 92 (1–2),173–187
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Roszek B.
    Nanotechnology in Medical Devices. Centre for Biological Medicines and Medical Technology, National Institute for Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2004, available from http://www.mhra.gov.uk/home/idcplg?IdcService=GET_FILE&dDocName=CON2022822&RevisionSelection-Method=Latest (accessed Dec 2009).
  38. 38.↵
    1. Lee I.,
    2. Zamora L.
    Australia and New Zealand Horizon Scanning Network Bulletin; 2007. available from http://www.health.gov.au/internet/horizon/publishing.nsf/Content/5190FF1EEFB296C4CA2575AD0080F33A/$File/Apr%2007%20ANZHSN%20Newsletter%202.pdf (accessed Dec 2009).
  39. 39.↵
    1. Wei C.,
    2. Wei W.,
    3. Morris M.,
    4. Kondo E.,
    5. Gorbounov M.,
    6. Tomalia D. A.
    Nanomedicine and drug delivery. Medical Clinics of North America 2007, 91 (5),863– 870
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Torchilin V. P.
    Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS Journal 2007, 9 (2),E128– E147
    OpenUrl
  41. 41.↵
    1. Xiong X.-B.,
    2. Uludag H.,
    3. Lavasanifar A.
    Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 2009, 30 (2),242– 253
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Simone E. A.,
    2. Dziubla T. D.,
    3. Colon-Gonzalez F.,
    4. Discher D. E.,
    5. Muzykantov V. R.
    Effect of polymer amphiphilicity on loading of a therapeutic enzyme into protective filamentous and spherical polymer nanocarriers. Biomacromolecules 2007, 8 (12),3914– 3921
    OpenUrlPubMed
  43. 43.↵
    1. Torchilin V. P.
    Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2006, 58 (14),1532– 1555
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Singh R.,
    2. Lillard J. W. Jr..
    Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology 2009, 86 (3),215– 223
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Son S. J.,
    2. Bai X.,
    3. Lee S. B.
    Inorganic hollow nanoparticles and nanotubes in nanomedicine: Part 1. Drug/gene delivery applications Drug Discovery Today 2007, 12 (15–16),650– 656
    OpenUrlPubMed
  46. 46.↵
    1. Parveen S.,
    2. Sahoo S. K.
    Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clinical Pharmacokinetics 2006, 45 (10),965–988
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Cattel L.,
    2. Ceruti M.,
    3. Dosio F.
    From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori 2003, 89 (3),237–249
    OpenUrlPubMedWeb of Science
  48. 48.↵
    1. Gabizon A.,
    2. Catane R.,
    3. Uziely B.,
    4. Kaufman B.,
    5. Safra T.,
    6. Cohen R.,
    7. Martin F.,
    8. Huang A.,
    9. Barenholz Y.
    Prolonged circulation time and enhanced accumulation in maglinant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes (Doxil). Cancer Res. 1994, 54, 987– 992
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Martin F. J.,
    2. Lasic D. D.,
    3. Papahadjopoulos D.
    Clinical Pharmacology and Antitumor Efficacy of DOXIL (Pegylated Liposomal Doxorubicin). In Medical Applications of Liposomes; Elsevier Science B. V.: Amsterdam, 1998; pp 635– 688
  50. 50.↵
    1. Northfelt D.,
    2. Stewart S.
    DOXIL (Pegylated Liposomal Doxorubicin) as First-Line Therapy of AIDS-Related Kaposi's Sarcoma (KS): Integrated Efficacy and Safety Results from Two Comparative Trials. 4th Conference on Retroviral Opportunistic Infections, Washington, DC, 1997
  51. 51.↵
    1. Jones M. C.,
    2. Leroux J. C.
    Polymeric micelles—a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics 1999, 48 (2),101–111
    OpenUrlCrossRefPubMedWeb of Science
  52. 52.↵
    1. Kwon G. S.,
    2. Okano T.
    Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 1996, 21 (2),107–116
    OpenUrlCrossRefWeb of Science
  53. 53.↵
    1. Rapoport N.
    Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science 2007, 32 (8–9),962–990
    OpenUrl
  54. 54.↵
    1. Nakanishi T.,
    2. Fukushima S.,
    3. Okamoto K.,
    4. Suzuki M.,
    5. Matsumura Y.,
    6. Okano T.,
    7. Sakurai Y.,
    8. Kataoka K.
    Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release 2001, 74 (1–3),295–302
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Choi K.-C.,
    2. Bang J. Y.,
    3. Kim P. I.,
    4. Kim C.,
    5. Song C. E.
    Amphotericin B-incorporated polymeric micelles composed of poly(d,l-lactide-co-glycolide)/dextran graft copolymer. International Journal of Pharmaceutics 2008, 355 (1–2),224– 230
    OpenUrlPubMed
  56. 56.↵
    1. Shiraishi K.,
    2. Kawano K.,
    3. Minowa T.,
    4. Maitani Y.,
    5. Yokoyama M.
    Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI contrast agents. Journal of Controlled Release 2009, 136 (1),14– 20
    OpenUrlPubMed
  57. 57.↵
    1. Duncan R.
    Nano-sized particles as “nanomedicines.” Available from http://www.mhra.gov.uk/home/idcplg?IdcService=GET_FILE&dDocName=CON2022821&RevisionSelectionMethod=Latest (accessed Dec 2009).
  58. 58.↵
    1. Gelderblom H.,
    2. Verweij J.,
    3. Nooter K.,
    4. Sparreboom A.
    Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer 2001, 37 (13),1590– 1598
    OpenUrlPubMed
  59. 59.↵
    1. Zhang J. A.,
    2. Anyarambhatla G.,
    3. Ma L.,
    4. Ugwu S.,
    5. Xuan T.,
    6. Sardone T.,
    7. Ahmad I.
    Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. European Journal of Pharmaceutics and Biopharmaceutics 2005, 59 (1),177– 187
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Thassu D.,
    2. Deleers M.,
    3. Pathak Y.
    Nanoparticulate Drug Delivery Systems; Thassu D., Deleers M., Pathak Y. Eds.; Informa Helathcare USA, Inc.: New York, 2007.
  61. 61.↵
    1. Edwards S. A
    The Nanotech Pioneers: Where Are They Taking Us? Wiley-VCH Verlag GmgH & Co.: Weinheim, Germany, 2006.
  62. 62.↵
    1. Harries M.,
    2. Ellis P.,
    3. Harper P.
    Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J. Clin. Oncol. 2005, 23, 7768– 7771
    OpenUrlFREE Full Text
  63. 63.↵
    1. Bach I. C.
    What is Bioimaging? Bioimaging Workshop 2009, Faculty of Life Sciences, University of Copenhagen, 2009; last updated Mar 2009; available from http://www.bioimaging.life.ku.dk/What-is-bioimaging.aspx (accessed Dec 2009).
  64. 64.↵
    1. Chen P. C.,
    2. Mwakwari S. C.,
    3. Oyelere A. K.
    Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnology 2008, 1, 45– 66
    OpenUrl
  65. 65.↵
    1. Kim J. -H.,
    2. Park K.,
    3. Nam H. Y.,
    4. Lee S.,
    5. Kim K.,
    6. Kwon I. C.
    Polymers for bioimaging. Progress in Polymer Science 2007, 32 (8–9),1031– 1053
    OpenUrl
  66. 66.↵
    1. Sharma P.,
    2. Brown S.,
    3. Walter G.,
    4. Santra S.,
    5. Moudgil B.
    Nanoparticles for bioimaging. Advances in Colloid and Interface Science 2006, 123– 126 471–485
  67. 67.↵
    1. Hild W. A.,
    2. Breunig M.,
    3. Goepferich A.
    Quantum dots—nano-sized probes for the exploration of cellular and intracellular targeting. European Journal of Pharmaceutics and Biopharmaceutics 2008, 68 (2),153–168
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Derfus A. M.,
    2. Chan W. C. W.,
    3. Bhatia S. N.
    Probing the cytotoxicity of semiconductor quantum dots. Nano Letters 2004, 4 (1),11–18
    OpenUrl
  69. 69.↵
    1. Yang F.,
    2. Li Y.,
    3. Chen Z.,
    4. Zhang Y.,
    5. Wu J.,
    6. Gu N.
    Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 2009, 30 (23–24),3882–3890
    OpenUrlPubMed
  70. 70.↵
    1. Thorek D. L. J.,
    2. Chen A. K.,
    3. Czupryna J.,
    4. Tsourkas A.
    Molecular Imaging of Cancer with Superparamagnetic Iron-Oxide Nanoparticles. In Cancer Imaging; Academic Press: San Diego, CA, 2008; pp 85–95
  71. 71.↵
    1. Li J. L.,
    2. Wang L.,
    3. Liu X. Y.,
    4. Zhang Z. P.,
    5. Guo H. C.,
    6. Liu W. M.,
    7. Tang S. H.
    In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters 2009, 274 (2),319– 326
    OpenUrlPubMed
  72. 72.↵
    1. Kawasaki E. S.,
    2. Player A.
    Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2005, 1 (2),101– 109
    OpenUrl
  73. 73.↵
    1. Liong M.,
    2. Lu J.,
    3. Kovochich M.,
    4. Xia T.,
    5. Ruehm S. G.,
    6. Nel A. E.,
    7. Tamanoi F.,
    8. Zink J. I.
    Multifunctional inorganic nanopartices for imaging, targeting and drug delivery. ACS Nano 2008, 2 (5),889– 896
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Kim J. H.,
    2. Morikis D.,
    3. Ozkan M.
    Adaptation of inorganic quantum dots for stable molecular beacons. Sensors and Actuators, B 2004, 102, 315– 319
    OpenUrl
  75. 75.↵
    1. Patterson G. H.,
    2. Knobel S. M.,
    3. Sharif W. D.,
    4. Kain S. R.,
    5. Piston D. W.
    Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophysical Journal 1997, 73, 2782– 2790
    OpenUrlCrossRefPubMedWeb of Science
  76. 76.↵
    1. Cavalcanti A.,
    2. Shirinzadeh B.,
    3. Kretly L. C.
    Medical nanorobotics for diabetes control. Nanomedicine 2008, 4 (2),127– 138
    OpenUrlPubMed
  77. 77.↵
    1. Li G.,
    2. Xi N.,
    3. Wang D. H.
    In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine 2005, 1 (1),31– 40
    OpenUrlPubMed
  78. 78.↵
    1. Ying L.,
    2. Bruckbauer A.,
    3. Rothery A. M.,
    4. Korchev Y. E.,
    5. Klenerman D.
    Programmable delivery of DNA through a nanopipet. Anal. Chem. 2002, 74 (6),1380– 1385
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Li S. Q.,
    2. Zhu R. R.,
    3. Zhu H.,
    4. Xue M.,
    5. Sun X. Y,
    6. Yao S. D.,
    7. Wang S. L.
    Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food and Chemical Toxicology 2008, 46 (12),3626– 3631
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Geiser M.,
    2. Rothen-Rutishauser B.,
    3. Kapp N.,
    4. Schurch S.,
    5. Kreyling W.,
    6. Schulz H.,
    7. Semmler M.,
    8. Hof V. I.,
    9. Heyder J.,
    10. Gehr P.
    Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005, 113 (11),1555– 1560
    OpenUrlCrossRefPubMedWeb of Science
  81. 81.↵
    1. Mahmoudi M.,
    2. Simchi A.,
    3. Milani A. S.,
    4. Stroeve P.
    Cell toxicity of superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science 2009, 336 (2),510– 518
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. Chithrani B. D.,
    2. Stewart J.,
    3. Allen C.,
    4. Jaffray D. A.
    Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 2009, 5 (2),118–127
    OpenUrlPubMed
  83. 83.↵
    1. Geiser M.,
    2. Casaulta M.,
    3. Kupferschmid B.,
    4. Schulz H.,
    5. Semmler-Behuke M.,
    6. Kreyling W.
    The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell Mol. Biol. 2008, 38 (3),371– 376
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.↵
    1. Lee K.,
    2. Yang Y. S.,
    3. Kwon S. J.,
    4. Lee J. S.,
    5. Choi S. J.,
    6. Seo H. S.,
    7. Kang M. S.,
    8. Lee B. C.,
    9. Kim S. N.,
    10. Yang H. S.,
    11. Han Y. A.,
    12. Ryu H. J.,
    13. Heo J. D.,
    14. Cho K. H.,
    15. Song C. W.,
    16. Cho K. H.
    Lung injury study by 15 days inhalation exposure of titanium dioxide nanoparticles in rats. Toxicology Letters 2009, 189 (Supplement 1), S186– S186
    OpenUrl
  85. 85.↵
    1. Cho M.,
    2. Cho W. S.,
    3. Choi M.,
    4. Kim S. J.,
    5. Han B. S.,
    6. Kim S. H.,
    7. Kim H. O.,
    8. Sheen Y. Y.,
    9. Jeong J.
    The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicology Letters 2009, 189 (3),177– 183
    OpenUrlCrossRefPubMedWeb of Science
  86. 86.↵
    1. Kobayashi N.,
    2. Naya M.,
    3. Endoh S.,
    4. Maru J.,
    5. Yamamoto K.,
    6. Nakanishi J.
    Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 2009, 264 (1–2),110–118
    OpenUrlCrossRefPubMedWeb of Science
  87. 87.↵
    1. Nishimori H.,
    2. Kondoh. M.; Isoda K.,
    3. Tsunoda S.,
    4. Tsutsumi Y.,
    5. Yagi K.
    Silica nanoparticles as hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics 2009, 72 (3),496– 501
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.↵
    1. Wang J. X.,
    2. Fan Y. B.,
    3. Gao Y.,
    4. Hu Q. H,
    5. Wang T. C.
    TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 2009, 30 (27),4590– 4600
    OpenUrlCrossRefPubMedWeb of Science
  89. 89.↵
    1. Oberdorster G.,
    2. Sharp Z.,
    3. Atudorei V.,
    4. Elder A.,
    5. Gelein R.,
    6. Kreyling W.,
    7. Cox C.
    Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 2004, 16 (6–7),437– 445
    OpenUrlCrossRefPubMedWeb of Science
  90. 90.↵
    1. de Jong W. H.,
    2. Roszek B.,
    3. Geertsma R. E.
    Nanotechnology in medical applications: possible risks for human health. RIVM report 265001002/2005, Department of Pharmaceutical Affairs and Medical Technology of the Dutch Ministry of Health, Welfare, and Sports, Bilthoven, The Netherlands, 2005
  91. 91.↵
    1. Karlsson H. L.,
    2. Gustafsson J.,
    3. Cronholm P.,
    4. Moller L.
    Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicology Letters 2009, 188 (2),112– 118
    OpenUrlCrossRefPubMedWeb of Science
  92. 92.↵
    1. Warheit D. B.,
    2. Webb T. R.,
    3. Sayes C. M.,
    4. Colvin V. L.,
    5. Reed K. L.
    Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicological Sciences 2006, 91 (1),227– 236
    OpenUrlAbstract/FREE Full Text
  93. 93.↵
    1. Warheit D. B.,
    2. Laurence B. R.,
    3. Reed K. L.,
    4. Roach D. H.,
    5. Reynolds G. A.,
    6. Webb T. R.
    Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Respiratory Toxicology 2004, 77 (1),117– 125
    OpenUrl
  94. 94.↵
    1. Semmler-Behnke M.,
    2. Takenaka S.,
    3. Fertsch S.,
    4. Wenk A.,
    5. Seitz J.,
    6. Mayer P.,
    7. Oberdorster G.,
    8. Kreyling W. G.
    Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ. Health Perspect. 2007, 115 (5),728– 733
    OpenUrlPubMedWeb of Science
  95. 95.↵
    1. Watari F.,
    2. Takashi N.,
    3. Yokoyama A.,
    4. Uo M.,
    5. Akasaka T.,
    6. Sato Y.,
    7. Abe S.,
    8. Totsuka Y.,
    9. Tohji K.
    Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J. R. Soc. Interface 2009, 6 (Suppl. 3),371–388
    OpenUrl
  96. 96.↵
    1. Chithrani B. D.,
    2. Ghazani A. A.,
    3. Chan W. C. W.
    Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 2006, 6 (4),662– 668
    OpenUrlCrossRefPubMedWeb of Science
  97. 97.↵
    1. Wallace W. E.,
    2. Keane M. J.,
    3. Murray D. K.,
    4. Chisholm W. P.,
    5. Maynard A. D.,
    6. Ong T. M.
    Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. Journal of Nanoparticle Research 2007, 1 (9),23– 38
    OpenUrl
  98. 98.↵
    1. Oberdörster E
    Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112 (10),1058– 1062
    OpenUrlCrossRefPubMedWeb of Science
  99. 99.↵
    1. Brown S. C.,
    2. Kamal M.,
    3. Nasreen N.,
    4. Baumuratov A.,
    5. Sharma P.,
    6. Antony V. B.,
    7. Moudgil B. M.
    Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Advanced Powder Technology 2007, 18 (1),69– 79
    OpenUrl
  100. 100.↵
    1. Radomski A.,
    2. Jurasz P.,
    3. Alonso-Escolano D.,
    4. Drews M.,
    5. Morandi M.,
    6. Malinski T.,
    7. Radomski M. W.
    Nanoparticle-induced platelet aggregation and vascular thrombosis. British Journal of Pharmacology 2005, 146 (6),882– 893
    OpenUrlCrossRefPubMedWeb of Science
  101. 101.↵
    1. Costigan S.
    The toxicology of nanoparticles used in healthcare products. 2006. Available from http://www.mhra.gov.uk/home/idcplg?IdcService=GET_FILE&dDocName=CON2025205&Revision-SelectionMethod=Latest (accessed Dec 2009).
  102. 102.↵
    1. Lockman P. R.,
    2. Koziara J. M.,
    3. Mumper R. J.,
    4. Allen D. D.
    Nanoparticle surface charges alter blood–brain barrier integrity and permeability. Journal of Drug Targeting 2004, 12 (9–10),635– 641
    OpenUrlCrossRefPubMedWeb of Science
  103. 103.↵
    1. Cho S. J.,
    2. Maysinger D.,
    3. Jain M.,
    4. Roder B.,
    5. Hackbarth S.,
    6. Winnik F. M.
    Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007, 23 (4),1974– 1980
    OpenUrlCrossRefPubMedWeb of Science
  104. 104.↵
    1. Choi A.,
    2. Cho S. J.,
    3. Desbarats J.,
    4. Lovric J.,
    5. Maysinger D.
    Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechol. 2007, 5 (1)
  105. 105.↵
    1. Kesisoglou F.,
    2. Panmai S.,
    3. Wu Y.
    Nanosizing—oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews 2007, 59 (7), 631–644.
    OpenUrlCrossRefPubMedWeb of Science
  106. 106.↵
    1. Pauluhn J.
    Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminium oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicological Sciences 2009, 109 (1),152– 167
    OpenUrlAbstract/FREE Full Text
  107. 107.↵
    1. Peukert W.,
    2. Schwarzer H.-C.,
    3. Stenger F.
    Control of aggregation in production and handling of nanoparticles. Chemical Engineering and Processing 2005, 44 (2),245– 252
    OpenUrl
  108. 108.↵
    1. Teeguarden J. G.,
    2. Hinderliter P. M.,
    3. Orr G.,
    4. Thrall B. D.,
    5. Pounds J. G.
    Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences 2006, 95 (2),300– 312
    OpenUrlCrossRefPubMedWeb of Science
  109. 109.↵
    1. Mohanraj V.,
    2. Chen Y.
    Nanoparticles—a review. Tropical Journal of Pharmaceutical Research 2006, 5 (1),561– 573
    OpenUrl
  110. 110.↵
    1. Powers K. W.,
    2. Brown S. C.,
    3. Krishna V. B.,
    4. Wasdo S. C.,
    5. Moudgil B. M.,
    6. Roberts S. M.
    Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences 2006, 90 (2),296– 303
    OpenUrlAbstract/FREE Full Text
  111. 111.↵
    1. Borm P. J.,
    2. Robbins. D.; Haubold S.,
    3. Kuhlbusch T.,
    4. Fissan H.,
    5. Donaldson K.,
    6. Schins R.,
    7. Stone V.,
    8. Kreyling W.,
    9. Lademann J.,
    10. Krutmann J.,
    11. Warheit D.,
    12. Oberdorster E.
    The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology 2006, 3 (11)
  112. 112.↵
    1. Rancan F.,
    2. Rosan S.,
    3. Boehm F.,
    4. Cantrell A.,
    5. Brellreich M.,
    6. Schoenberger,
    7. Hirsch A.,
    8. Moussa F.
    Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J. Photochem. Photobiol. 2002, 67 (3),157– 162
    OpenUrl
  113. 113.↵
    FDA. Frequently asked questions (nanotechnology). Science & Research, U.S. Department of Health & Human Services, U.S. FDA; last updated May 2009; available from http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/FrequentlyAskedQuestions/default.htm (accessed Dec 2009).
  114. 114.↵
    MHRA. How we regulate nanotechnology. Nanotechnology, MHRA; last updated Feb 2008; available from http://www.mhra.gov.uk/Howweregulate/Nanotechnology/index.htm (accessed Dec 2009).
  115. 115.↵
    TGA. Nanotechnology and therapeutic products. Department of Health and Ageing, Therapeutic Goods Administration, Australian Government; last updated Jul 2008; available from http://www.tga.gov.au/meds/qanano.htm (accessed Dec 2009).
  116. 116.↵
    1. D'Silva J.,
    2. Calster G. V.
    Regulating nanomedicine: a European perspective. Nature Precedings 2008.
  117. 117.↵
    TGA. Medicines regulation and the TGA. Department of Health and Ageing, Therapeutic Goods Administration, Australian Government; Last updated Aug 2009; available from http://www.tga.gov.au/docs/html/medregs.htm (accessed Dec 2009).
  118. 118.↵
    MHRA. Making regulatory decisions about medicines and medical devices. 2007; available from http://www.mhra.gov.uk/home/idcplg?IdcService=GET_FILE&dDocName=CON2030689&RevisionSelectionMethod=Latest&noSaveAs=0&Rendition=WEB (accessed Dec 2009).
  119. 119.↵
    Health Canada. Access to therapeutic products: the regulatory process in Canada. About Health Canada, Health Canada; last updated Jun 2006; available from http://www.hc-sc.gc.ca/ahc-asc/pubs/hpfb-dgpsa/access-therapeutic_acces-therapeutique-eng.php (accessed Dec 2009).
  120. 120.↵
    1. Finan C.
    Federal nanotech risk research plan still comes up short. 2008; available from http://www.nanotechproject.org/process/files/6051/nano_nniordreleasefinal.pdf (accessed Dec 2009).
  121. 121.↵
    MHRA. Nanotechnology. In General Safety Information and Advice, Safety Information, MHRA; last updated Mar 2008; available from http://www.mhra.gov.uk/Safetyinformation/Generalsafetyinformationandadvice/Technicalinformation/Nanotechnology/index.htm (accessed Dec 2009).
  122. 122.↵
    U.S. FDA and Nanotechnology Task Force. Nanotechnology task force report. 2007; available from http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/NanotechnologyTask-ForceReport2007/default.htm#organization (accessed Dec 2009).
  123. 123.↵
    NCI. Nanotechnology characterization lab. National Cancer Institute; last updated 2009; available from http://ncl.cancer.gov/ (accessed Dec 2009).
  124. 124.↵
    1. Bucher J. R.
    Evaluating human health risks from nanomaterials. In National Toxicology Program; 2006; available from http://www.toxexpo.com/ms/Bucher.pdf (accessed Dec 2009).
  125. 125.↵
    TGA. A review of the scientific literature on the safety of nanoparticulate titanium dioxide or zinc oxide in sunscreens. 2009; available from http://www.tga.gov.au/npmeds/sunscreen-zotd.pdf (accessed Dec 2009).
  126. 126.↵
    MHRA. Conference publications. In Conferences; MHRA; last updated Aug 2008; available from http://www.mhra.gov.uk/ConferencesLearningCentre/Conferences/Publications/index.htm (accessed Dec 2009).
  127. 127.↵
    EMA. Medicines and emerging science—post conference presentations from the ad-hoc expert group to nanomedicines. European Medicines Agency; last updated Jan 2010; available from http://www.ema.europa.eu/htms/human/mes/nanotechnology_workshop.htm (accessed Jan 2010).
  128. 128.↵
    EMA. Human Medicines—medicines and emerging science—emerging technologies. European Medicines Agency; last updated Jan 2010; available from http://www.ema.europa.eu/htms/human/mes/emergingtechnologies.htm (accessed Dec 2010).
  129. 129.↵
    HumGen. Research projects. HumGen International; available from http://www.humgen.umontreal.ca/int/projets.cfm?id_projet=97 (accessed Dec 2009).
  130. 130.↵
    1. Faunce T. A.
    Nanotherapeutics: new challenges for safety and cost-effectiveness regulation in Australia. eMJA 2007, 186 (4),189– 191
    OpenUrlPubMed
  131. 131.↵
    1. Aitken R.,
    2. Creely K.,
    3. Tan C.
    Nanoparticles: an occupational hygiene review. 2004; available from http://www.hse.gov.uk/research/rrpdf/rr274.pdf (accessed Dec 2009).
  132. 132.↵
    1. John C.,
    2. Monica J. R.
    Talking the Talk: Standardizing the Language of Nanotechnology. 2008; available from http://publicaa.ansi.org/sites/apdl/Documents/News%20and%20Publications/Other%20Documents/Series%20on%20Nanotechnology%20Standardization/Nano-Law-Report-WG1-08-08.pdf (accessed Dec 2009).
  133. 133.↵
    National Nanotechnology Initiative. What is nanotechnology? Nanotech Facts, National Nanotechnology Initiative; available from http://www.nano.gov/html/facts/whatIsNano.html (accessed Dec 2009).
  134. 134.↵
    1. Chaudhry Q.,
    2. Blackburn J.,
    3. Floyd P.,
    4. George C.,
    5. Nwaogu T.,
    6. Boxall A.,
    7. Aitken R.
    A scoping study to identify gaps in environmental regulation for the products and applications of nanotechnologies. U.K. Department of Environment, Food and Rural Affairs: London, 2006.
  135. 135.↵
    1. Nordan M. M,
    2. Holman M. W.
    A prudent approach to nanotechnology environmental, health, and safety risks. Ind. Biotechnol. 2005, 1 (3),146– 149
    OpenUrl
  136. 136.↵
    1. Frater L.,
    2. Stokes E.,
    3. Lee R.,
    4. Oriola T.
    An overview of the framework of current regulation affecting the development and marketing of nanomaterials. Cardiff University; 2006, available from http://www.dius.gov.uk/∼/media/publications/F/file36167 (accessed Dec 2009).
  137. 137.↵
    1. Nagarajan R.
    Nanoparticles: Building blocks for nanotechnology. ACS Symposium Series 2008, 996, 2– 14
    OpenUrl
  138. 138.↵
    ANSI. About the nanotechnology standards panel. Standards Activities, American National Standards Institute; available from http://www.ansi.org/standards_activities/standards_boards_panels/nsp/overview.aspx?menuid=3 (accessed Dec 2009).
  139. 139.↵
    ISO. ISO—technical committees—TC 229—nanotechnologies. International Organization for Standardization; last updated 2010; available from http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_committees/iso_technical_committee.htm?commid=381983 (accessed Jan 2010).
  140. 140.↵
    1. Luther W.
    Industrial application of nanomaterials—chances and risks. 2004. available from http://www.nanowerk.com/nanotechnology/reports/reportpdf/report27.pdf (accessed Dec 2009).
  141. 141.↵
    Nanosafe. Nanosafe; Last updated Oct 2009; available from http://www.nanosafe.org/scripts/home/publigen/content/templates/show.asp?P=55&L=EN&ITEMID=2 (accessed Dec 2009).
  142. 142.↵
    1. Webster T. J.
    Regulation of nanotechnology: are we doing enough? Int. J. Nanomedicine 2007, 2 (3),275– 276
    OpenUrl
  143. 143.↵
    FDA. Frequently asked questions about combination products. Combination Products, U.S. Department of Health & Human Services, U.S. FDA; Last updated Jul 2009; available from http://www.fda.gov/CombinationProducts/AboutCombinationProducts/ucm101496.htm (accessed Dec 2009).
  144. 144.↵
    FDA. Definition of Primary Mode of Action of a Combination Product. 2004, Federal Register.
  145. 145.↵
    1. Miller J.
    Beyond biotechnology: FDA regulation of nanomedicine. In The Columbia Science and Technology Law Review 2003.
  146. 146.↵
    1. Faunce T. A.,
    2. Johnston K.,
    3. Bambrick H.
    The Trans-Tasman Therapeutic Products Authority: potential AUSFTA impacts on safety and cost-effectiveness regulation for medicines and medical devices in New Zealand. Victoria University of Wellington Law Review 2006, 37, 365– 390
    OpenUrl
  147. 147.↵
    1. Rejeski D.
    FDA-regulated products containing nanotechnology materials. Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars, 2006.
  148. 148.↵
    TGA. Guidelines for levels and kinds of evidence to support indications and claims. Department of Health and Ageing, Therapeutic Goods Administration, Australia Government; last updated Oct 2007; available from http://www.tga.gov.au/docs/html/tgaccevi.htm (accessed Dec 2009).
  149. 149.↵
    TGA. Australian code of good manufacturing practice for medicinal products. 2002; available from http://www.tga.gov.au/DOCS/pdf/gmpcodau.pdf (accessed Dec 2009).
  150. 150.↵
    1. Amoabediny G.,
    2. et al.
    Guidelines for safe handling, use and disposal of nanoparticles. In Nanosafe 2008: International Conference on Safe production and use of nanomaterials; IOP Publishing, 2009.
  151. 151.↵
    1. Buzea C.,
    2. Blandino I. I. P.,
    3. Robbie K.
    Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2 (4), MR17–MR71
    OpenUrlCrossRefPubMedWeb of Science
  152. 152.↵
    1. Inoue K.,
    2. Takano H.,
    3. Yanagisawa R.,
    4. Sakurai M.,
    5. Abe S.,
    6. Yoshino S.,
    7. Yamaki K.,
    8. Yoshikawa T.
    Effects of nanoparticles on lung physiology in the presence or absence of antigen. Int. J. Immunopathol. Pharmacol. 2007, 20 (4),737– 744
    OpenUrlAbstract/FREE Full Text
  153. 153.↵
    1. Furgeson D. Y.
    Nanotools for toxicity: assessment of nanomedicines. 2008; available from http://www.fda.gov/ohrms/dockets/ac/08/slides/2008-4370s1-05-Guest-Furgeson.pdf (accessed Dec 2009).
  154. 154.↵
    EC. Medicinal products for human and veterinary use. In EU Guidelines to Good Manufacturing Practice, 2005.
  155. 155.↵
    1. Ng D.,
    2. Huang P. Y.,
    3. Jeng Y. R.,
    4. Liang H.
    Nanoparticle removal mechanisms during post-cmp cleaning. Electrochem. Solid-State Lett. 2007, 10 (8),H227– H231
    OpenUrl
  156. 156.↵
    1. Libman S.,
    2. et al.
    Managing semiconductor manufacturing risk through improved control of nano-particles in ultrapure water. Available from http://www.fmtdevelop.com/uploads/3/5/4/5/3545567/npcd_itrsroundrobin_2009.pdf (accessed Dec 2009).
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 2
March/April 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead
Sia Chong Hock, Yan Mei Ying, Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology Mar 2011, 65 (2) 177-195;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead
Sia Chong Hock, Yan Mei Ying, Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology Mar 2011, 65 (2) 177-195;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • An Overview of Nanomedicines
    • Liposomes
    • Polymeric Micelles
    • Properties of Nanoparticles and Their Effects on the Safety and Quality of Nanomedicines
    • Current Regulations and GMP Requirements Governing Nanomedicines and Challenges in the Control of Their Manufacturing Processes, Product Quality, and Safety
    • Challenges Faced and Ongoing Improvements
    • Evaluation of Current Proposed Regulations and Improvements
    • Challenges Faced and Improvements Proposed
    • Conclusion
    • Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire