Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions

Sandeep Nema and Ronald J. Brendel
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 287-332; DOI: https://doi.org/10.5731/pdajpst.2011.00634
Sandeep Nema
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Sandeep.nema@pfizer.com
Ronald J. Brendel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Robertson M. I.
    Regulatory issues with excipients. Int. J. Pharm. 1999, 187, 273–276.
    OpenUrlPubMedGoogle Scholar
  2. 2.↵
    1. Amidon G. E.,
    2. Peck G. E.,
    3. Block L. H.,
    4. Moreton R. C.,
    5. Katdare A.,
    6. Lafaver R.,
    7. Sheehan C.
    〈1059〉 Excipient performance, a proposed new USP General Information Chapter. Pharmacopoeial Forum 2007, 33 (6), 1311–1321.
    OpenUrlGoogle Scholar
  3. 3.↵
    1. Moreton C.
    Functionality and performance of excipients in a quality-by-design world: Part 1. Am. Pharm. Rev. 2009, 12 (1), 40–44.
    OpenUrlGoogle Scholar
  4. 4.↵
    Industry is developing a more profound understanding of excipients. Gold Sheet 2009, September.
    Google Scholar
  5. 5.↵
    BP. Parenteral Preparations. In British Pharmacopoeia, Stationary Office: London, 1999; Vol. II, p 1575.
    OpenUrlGoogle Scholar
  6. 6.↵
    EP. Parenteral Preparations. In European Pharmacopoeia, 6 ed.; Council of Europe: Strasbourg, 2009; p 1765.
    Google Scholar
  7. 7.↵
    1. Uchiyama M.
    Regulatory status of excipients in Japan. Drug Information Journal 1999, 33 (1), 27–32.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  8. 8.↵
    1. Avis K. E.,
    2. Lieberman H. A.,
    3. Lachman L.
    1. Boylan J. C.,
    2. DeLuca P. P.
    Formulation of Small Volume Parenterals. In Pharmaceutical Dosage Forms: Parenteral Medications, 2nd ed.; Avis K. E., Lieberman H. A., Lachman L. Eds. Marcel Dekker, Inc.: New York, 1992; Vol. 1, pp 173–248.
    OpenUrlGoogle Scholar
  9. 9.↵
    1. Matthews B.
    Excipients used in products approved through the E.U. centralised procedure. The Regulatory Affairs J. 2002, 13 (12), 1036–1044.
    OpenUrlGoogle Scholar
  10. 10.↵
    1. Matthews B.
    Excipients for non-oral routes of administration. The Regulatory Affairs J. 2002, 13 (11), 897–908.
    OpenUrlGoogle Scholar
  11. 11.↵
    1. Nema S.,
    2. Washkuhn R. J.,
    3. Brendel R. J.
    Excipients and their use in injectable products. PDA J. Pharm. Sci. Technol. 1997, 51 (4), 166–171.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  12. 12.↵
    1. Powell M. F.,
    2. Nguyen T.,
    3. Baloian L.
    Compendium of excipients for parenteral formulations. PDA J. Pharm. Sci. Technol. 1998, 52 (5), 236–311.
    OpenUrlFREE Full TextGoogle Scholar
  13. 13.↵
    1. Strickley R. G.
    Parenteral formulations of small molecules therapeutics marketed in the United States (1999). Part I. PDA J. Pharm. Sci. Technol. 1999, 53 (6), 324–349.
    OpenUrlFREE Full TextGoogle Scholar
  14. 14.↵
    1. Strickley R. G.
    Parenteral formulations of small molecules therapeutics marketed in the United States (1999). Part II. PDA J. Pharm. Sci. Technol. 2000, 54 (1), 69–96.
    OpenUrlFREE Full TextGoogle Scholar
  15. 15.↵
    1. Strickley R. G.
    Parenteral formulations of small molecules therapeutics marketed in the United States (1999). Part III. PDA J. Pharm. Sci. Technol. 2000, 54 (2), 152–169.
    OpenUrlFREE Full TextGoogle Scholar
  16. 16.↵
    1. Wang Y. J.,
    2. Hanson M. A.
    Parenteral formulations of proteins and peptides: stability and stabilizers. PDA Pharm. J. Sci. Technol. 1988, 42 supplement, S4–S26.
    OpenUrlGoogle Scholar
  17. 17.↵
    1. Wang Y. J.,
    2. Kowal R. R.
    Review of excipients and pH's for parenteral products used in the United States. J. Parenter. Sci. Technol. 1980, 34 (6), 452.
    OpenUrlGoogle Scholar
  18. 18.↵
    GenRx. Mosby's GenRx, 8 ed.; Mosby-Year Book, Inc.: St. Louis, 1998.
    Google Scholar
  19. 19.↵
    Physician's Desk Reference, 63 ed.; Thomson Corporation: Toronto, 2009.
    Google Scholar
  20. 20.↵
    FDA. Inactive Ingredient Guide. In Division of Drug Information Resources; FDA, CDER: 2009.
    Google Scholar
  21. 21.↵
    1. Rowe R. C.,
    2. Sheskey P. J.,
    3. Quinn M. E.
    Handbook of Pharmaceutical Excipients, 6 ed.; The Pharmaceutical Press: London, 2009.
    Google Scholar
  22. 22.↵
    1. Trissel L. A.
    Handbook on Injectable Drugs, 10 ed.; American Society of Health-System Pharmacists, Inc: Bethesda, MD, 1998.
    Google Scholar
  23. 23.↵
    EMEA. Note for Guidance on Quality of Water for Pharmaceutical Use. In CPMP/QWP/158/01 revision—EMEA/CVMP/115/01 revision: May 2002.
    Google Scholar
  24. 24.↵
    EMEA. Reflection Paper on Water for Injection Prepared by Reverse Osmosis. In EMEA/CHMP/CVMP/QWP/28271/2008: 5 March 2008.
    Google Scholar
  25. 25.↵
    1. Sweetana S.,
    2. Akers M. J.
    Solubility principles and practices for parenteral drug dosage form development. PDA J. Pharm. Sci. Technol. 1996, 50 (5), 330–342.
    OpenUrlFREE Full TextGoogle Scholar
  26. 26.↵
    1. Yalkowsky S. H.,
    2. Roseman T. J.
    Solubilization of Drugs by Cosolvents. In Techniques of Solubilization of Drugs; Marcel Dekker, Inc.: New York, 1981; pp 91–134.
    Google Scholar
  27. 27.↵
    1. Hancock B. C.,
    2. York P.,
    3. Rowe R. C.
    The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 1997, 148, 1–21.
    OpenUrlGoogle Scholar
  28. 28.↵
    1. Rubino J. T.,
    2. Yalkowsky S. H.
    Cosolvency and cosolvent polarity. Pharm. Res. 1987, 4 (3), 220–230.
    OpenUrlPubMedGoogle Scholar
  29. 29.↵
    1. Brazeau G. A.,
    2. Cooper B.,
    3. Svetic K. A.,
    4. Smith C. L.,
    5. Gupta P.
    Current perspectives on pain upon injection of drugs. J. Pharm. Sci. 1998, 87 (6), 667–677.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  30. 30.↵
    1. Brazeau G. A.,
    2. Fung H.
    Use of an in vivo model for the assessment of muscle damage from intramuscular injections: in vitro–in vivo correlation and predictability with mixed solvent systems. Pharm. Res. 1989, 6 (9), 766–771.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  31. 31.↵
    1. Reed K. W.,
    2. Yalkowsky S.
    Lysis of human red blood cells in the presence of various cosolvents. J. Parenter. Sci. Technol. 1985, 39 (2), 64–69.
    OpenUrlPubMedGoogle Scholar
  32. 32.↵
    1. Yalkowsky S. H.,
    2. Krzyzaniak J. F.,
    3. Ward G. H.
    Formulation-related problems associated with intravenous drug delivery. J. Pharm. Sci. 1998, 87 (7) 787–796.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  33. 33.↵
    1. Mottu F.,
    2. Laurent A.,
    3. Rufenacht D. A.,
    4. Doelker E.
    Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. PDA J. Pharm. Sci. Technol. 2000, 54 (6), 456–465.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  34. 34.↵
    USP. 〈1〉 Injections. In USP, 32 ed.; U.S. Pharmacopeial Convention, Inc.: Rockville, MD, 2009.
    Google Scholar
  35. 35.↵
    JP. Injections. In The Japanese Pharmacopoeia, XV ed.; 2006, p 10.
    Google Scholar
  36. 36.↵
    1. Johnson D. M.,
    2. Gu L. C.
    Autoxidation and Antioxidants. In Encyclopedia of Pharmaceutical Technology; Swarbrick, J.; Boylan, J. C., Eds. Marcel Dekker, Inc.: New York, 1988; Vol. 1 , pp 415–449.
    OpenUrlGoogle Scholar
  37. 37.↵
    1. Pearlman R.,
    2. Wang Y. J.
    1. Herman A. C.,
    2. Boone T. C.,
    3. Lu H. S.
    Characterization, Formulation, and Stability of Neupogen (Filgrastim), a Recombinant Human Granulocyte-Colony Stimulating Factor. In Formulation, Characterization, and Stability of Protein Drugs: Case Histories; Pearlman R., Wang Y. J. Eds. Plenum Press: New York, 1996; Vol. 9, p 325.
    OpenUrlGoogle Scholar
  38. 38.↵
    1. Fatouros A.,
    2. Osterberg T.,
    3. Mikaelsson M.
    Recombinant factor VIII SQ—influence of oxygen, metal ions, pH and ionic strength on its stability in aqueous solution. Int. J. Pharm. 1997, 155 (1), 121–131.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  39. 39.↵
    1. Stadtman E. R.
    Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radical Biol. Med. 1990, 9 (4), 315–325.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  40. 40.↵
    1. Enever R. P.,
    2. Po A. L. W.,
    3. Shotton E.
    Factors influencing decomposition rate of amitriptyline hydrochloride in aqueous solution. J. Pharm. Sci. 1977, 66 (8), 1087–1089.
    OpenUrlPubMedGoogle Scholar
  41. 41.↵
    1. Munson J. W.,
    2. Hussain A.,
    3. Bilous R.
    Precautionary note for use of bisulfite in pharmaceutical formulations. J. Pharm. Sci. 1977, 66 (12), 1775–1776.
    OpenUrlPubMedGoogle Scholar
  42. 42.↵
    1. Akers M. J.
    Antioxidants in pharmaceutical products. J. Parenter. Sci. Technol. 1982, 36 (5), 222–228.
    OpenUrlPubMedGoogle Scholar
  43. 43.↵
    Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on inclusion of Antioxidants and Antimicrobial Preservatives in Medicinal Products. In CPMP: January 1998.
    Google Scholar
  44. 44.↵
    EMEA. Guideline on Excipients in the Dossier for Application for Marketing Authorization of a Medical Product. In EMEA/CHMP/QWP/396951/2006: 19 June 2007.
    Google Scholar
  45. 45.↵
    1. Dabbah R.
    The use of preservatives in compendial articles. Pharmacopeial Forum 1996, 22 (4), 2696.
    OpenUrlGoogle Scholar
  46. 46.↵
    Martindale: The Extra Pharmacopoeia. 31 ed.; Royal Pharmaceutical Society: London, 1996; p 1128.
    Google Scholar
  47. 47.↵
    British Pharmaceutical Codex, Royal Pharmaceutical Society: London, 1973. p 100.
    Google Scholar
  48. 48.↵
    1. Oishi S.
    Effects of propyl paraben on the male reproductive system. Food Chem. Toxicol. 2002, 40 (12), 1807–1813.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  49. 49.↵
    1. Oishi S.
    Effects of butylparaben on the male reproductive system in mice. Arch. Toxicol. 2002, 76 (7), 423–429.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  50. 50.↵
    1. Oishi S.
    Lack of spermatotoxic effects of methyl and ethyl esters of p-hydroxybenzoic acid in rats. Food Chem. Toxicol. 2004, 42, 1845–1849.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  51. 51.↵
    1. Hoberman A. M.,
    2. Schreur D. K.,
    3. Leazar T.,
    4. Daston D. P.,
    5. Carthew P.,
    6. Re T.,
    7. Loretz L.,
    8. Mann P.
    Lack of effect of butylparaben and methylparabben on the reproductive system in male rats. Birth Defects Res. B Dev. Reprod. Toxicol. 2008, 83 (2), 123–133.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  52. 52.↵
    1. Dabbah R.
    Harmonization of microbiological methods—a status report. Pharmacopeial Forum 1997, 23 (6), 5334–5344.
    OpenUrlGoogle Scholar
  53. 53.↵
    European Pharmacopoeia, 3 ed.; Council of Europe: Strasbourg, 1997; p 286.
    Google Scholar
  54. 54.↵
    USP. 〈51〉 Antimicrobial Effectiveness Testing. In USP, 32 ed.; U.S. Pharmacopeial Convention, Inc.: Rockville, MD, 2009.
    Google Scholar
  55. 55.↵
    CPMP. Note for Guidance on Maximum Shelf-life for Sterile Products for Human Use After First Opening or Following Reconstitution. CPMP, July 1998.
    Google Scholar
  56. 56.↵
    1. Lam X. M.,
    2. Costantino H. R.,
    3. Overcashier D. E.,
    4. Nguyen T. H.,
    5. Hsu C. C.
    Replacing succinate with glycolate buffer improves the stability of lyophilized interferon-gamma. Int. J. Pharm. 1996, 142 (1), 85–95.
    OpenUrlGoogle Scholar
  57. 57.↵
    1. Piedmonte D. M.,
    2. Summers C.,
    3. McAuley A.,
    4. Karamujic L.,
    5. Ratnaswamy G.
    Sorbitol crystallization can lead to protein aggregation in frozen protein formulations. Pharm. Res. 2007, 24 (1), 136–146.
    OpenUrlPubMedGoogle Scholar
  58. 58.↵
    1. Pikal M. J.
    The Correlation of Structural Relaxation Time with Pharmaceutical Stability. Freeze-Drying of Pharmaceuticals and Biologicals Conference, Brownsville, VT, September 23–26, 1998.
    Google Scholar
  59. 59.↵
    1. Arakawa T.,
    2. Kita Y.,
    3. Carpenter J. F.
    Protein-solvent interactions in pharmaceutical formulations. Pharm. Res. 1991, 8 (3), 285–291.
    OpenUrlPubMedGoogle Scholar
  60. 60.↵
    1. Miller D. P.,
    2. Anderson R. E.,
    3. de Pablo J. J.
    Stabilization of lactate dehydrogenase following freeze-thawing and vacuum-drying in the presence of trehalose and borate. Pharm. Res. 1998, 15 (8), 1215–1221.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  61. 61.↵
    1. Carpenter J. F.,
    2. Crowe J. H.
    Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 1998, 25 (5), 459–470.
    OpenUrlGoogle Scholar
  62. 62.↵
    1. Baumann T. J.,
    2. Smythe M. A.,
    3. Kaufmann K.,
    4. Miloboszewski Z.,
    5. O'Malley J.,
    6. Fudge R. P.
    Dissolution times of adriamycin and adriamycin RDF. Am. J. Hosp. Pharm. 1988, 45, 1667.
    OpenUrlGoogle Scholar
  63. 63.↵
    1. Jain N. K.,
    2. Jain S.,
    3. Singhai A. K.
    Enhanced solubilization and formulation of an aqueous injection of piroxicam. Pharmazie 1997, 52 (12), 942–946.
    OpenUrlGoogle Scholar
  64. 64.↵
    1. Meyer J. D.,
    2. Manning M. C.
    Hydrophobic ion pairing: altering the solubility properties of biomolecules. Pharm. Res. 1998, 15 (2), 188–192.
    OpenUrlCrossRefPubMedGoogle Scholar
  65. 65.↵
    1. Wang Y. J.,
    2. Dahl T. C.,
    3. Leesman G. D.,
    4. Monkhouse D. C.
    Optimization of autoclave cycles and selection of formulation for parenteral product. Part II: Effect of counter-ion on pH and stability of diatrizoic acid at autoclave temperatures. J. Parenter. Sci. Technol. 1984, 38 (2), 72–77.
    OpenUrlPubMedGoogle Scholar
  66. 66.↵
    JPE. Japanese Pharmaceutical Excipients Directory. Yakuji Nippo, Ltd: Tokyo, 2004.
    Google Scholar
  67. 67.↵
    Excipients in Pharmaceutical Dosage Forms: The Challenge of the 21st Century. Nice, France, May 14–15, 1998.
    Google Scholar
  68. 68.↵
    PF. Benzyl alcohol. Pharmacopeial Forum 1995, 21 (5).
    Google Scholar
  69. 69.↵
    USP. 〈1078〉 Good Manufacturing Practices for Bulk Pharmaceutical Excipients. In USP, 32nd ed.; U.S. Pharmacopeial Convention, Inc.: Rockville, MD, 2009.
    Google Scholar
  70. 70.↵
    Excipients in the Label and Package Leaflet of Medicinal Products for Human Use. In European Commission; July 2003; Guidelines Medicinal products for human use Safety, environment and information Vol. 3B.
    Google Scholar
  71. 71.↵
    CPMP. Note for Guidance on the Use of Bovine Serum in the Manufacture of Human Biological Medicinal Products. In CPMP/BWP/1793/02: 18 June 2003.
    Google Scholar
  72. 72.↵
    CPMP. Note for Guidance on Development Pharmaceutics. In CPMP: July 1998.
    Google Scholar
  73. 73.↵
    1. Akers M. J.
    Excipient-drug interactions in parenteral formulations. J. Pharm. Sci. 2002, 91 (11), 2283–2300.
    OpenUrlCrossRefPubMedGoogle Scholar
  74. 74.↵
    1. Paul W. L.
    Excipient intake and heavy metals limits. Pharmacopeial Forum 1995, 21 (6), 1638–1640.
    OpenUrlGoogle Scholar
  75. 75.↵
    Aluminum in large and small volume parenterals used in total parenteral nutrition. Federal Register 1998, 63 (2), 176–185.
    OpenUrlPubMedGoogle Scholar
  76. 76.↵
    FDA. Guideline on Validation of the Limulus Amebocyte Lysate Test as an End-Product Test for Human and Animal Parenteral Drugs. In Biological Products and Medical Devices, FDA: December 1987.
    Google Scholar
  77. 77.↵
    1. Opalchenova G. A.
    Comparison of the microbial limit tests in the British, European, and United States Pharmacopeias and recommendation for harmonization. Pharmacopeial Forum 1994, 20 (4), 7872–7877.
    OpenUrlGoogle Scholar
  78. 78.↵
    1. Taylor P.
    Regulation for excipients is brewing across the Atlantic. Pharm. Technol. 2009, 33 (2), 86–87.
    OpenUrlGoogle Scholar
  79. 79.↵
    Fatalities Associated with Ingestion of Diethylene Glycol-Contaminated Glycerin Used to Manufacture Acetaminophen Syrup—Haiti, November 1995–June 1996, In Morbidity and Mortality Weekly Report, U.S. Department of Health and Human Services: August 2, 1996; Vol. 45, pp 649–650.
    OpenUrlPubMedGoogle Scholar
  80. 80.↵
    FDA. Pharmaceutical Components at Risk for Melamine Contamination. U.S. Department of Health and Human Services, FDA.; August 2009.
    Google Scholar
  81. 81.↵
    FDA. Interim Inactive Ingredient Policy. Office of Generic Drugs (OGD), FDA, 1994.
    Google Scholar
  82. 82.↵
    1. Weiner M.,
    2. Bernstein I. L.
    Adverse Reactions to Drug Formulation Agents: A Handbook of Excipients, Marcel Dekker, Inc: New York, NY, 1989.
    Google Scholar
  83. 83.↵
    USP. 〈1074〉 Excipient Biological Safety Evaluation Guidelines. In USP, 32 ed.; U.S. Pharmacopeial Convention, Inc: Rockville, MD, 2009.
    Google Scholar
  84. 84.↵
    FDA. Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients. Guidance for Industry; FDA; May 2005.
    Google Scholar
  85. 85.↵
    1. Matthews B.
    BSE/TSE risks associated with active pharmaceutical ingredients and starting materials: the situation in Europe and the global implications for healthcare manufacturers. PDA J. Pharm. Sci. Technol. 2001, 55 (5), 295–328.
    OpenUrlFREE Full TextGoogle Scholar
  86. 86.↵
    CPMP. Note for Guidance on Minimizing the Risk of Transmitting Animal Spongiform Encephalopathy Agents via Medicinal Products. In CPMP: 21 April 1999.
    Google Scholar
  87. 87.↵
    FDA. The Sourcing and Processing of Gelatin to Reduce the Potential Risk Posed by Bovine Spongiform Encephalopathy (BSE) in FDA-Regulated Products for Human Use. Guidance for Industry. U.S. Department of Health and Human Services, FDA: September 1997.
    Google Scholar
  88. 88.↵
    EMEA. Gelatin for Use in Pharmaceuticals: Explanatory Note. In EMEA/CPMP/4306/00/v0.2: 13 December 2000.
    Google Scholar
  89. 89.↵
    EMEA. First Cases of BSE in USA and Canada: Risk Assessment of Ruminate Materials Originating from USA and Canada. In EMEA/CHMP/BWP/27/04: 21 July 2004.
    Google Scholar
  90. 90.↵
    EMEA. CHMP Position Statement on Creutzfeldt-Jakob Disease and Plasma-Derived and Urine Derived Medicinal Products. In EMEA/CPMP/BWP/2879/02/rev 1: 23 June 2004.
    Google Scholar
  91. 91.↵
    1. Chuang V. T. G.,
    2. Kragh-Hansen U.,
    3. Otagiri M.
    Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 2002, 19 (5).
    Google Scholar
  92. 92.↵
    CPMP. Position State on Polysorbate 80. In CPMP/BWP/1952/98: 22 October 1998.
    Google Scholar
  93. 93.↵
    1. Frank D. W.,
    2. Gray J. E.,
    3. Weaver R. N.
    Cyclodextrin nephrosis in the rat. Am. J. Pathol. 1976, 83 (2) 367–382.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  94. 94.↵
    1. Stella V. J.,
    2. Rajewski R. A.
    Cyclodextrins: their future in drug formulation and delivery. Pharm. Res. 1997, 14 (5), 556–567.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  95. 95.↵
    1. Thompson D. O.
    Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Sys. 1997, 14 (1), 1–104.
    OpenUrlPubMedWeb of ScienceGoogle Scholar
  96. 96.↵
    1. Loftsson T.,
    2. Johannesson H. R.
    The influence of cyclodextrins on the stability of cephalothin and aztreonam in aqueous solutions. Die Pharmazie 1994, 49, 292–293.
    OpenUrlGoogle Scholar
  97. 97.↵
    1. Lehner S. J.,
    2. Muller B. W.,
    3. Seydel J. K.
    Effect of hydroxylpropyl-beta-cyclodextrin on the antimicrobial action of preservatives. J. Pharm. Pharmacol. 1994, 46 186–191.
    OpenUrlPubMedGoogle Scholar
  98. 98.↵
    1. Felt O.,
    2. Buri P.,
    3. Gurny R.
    Chitosan: A unique polysaccharide for drug delivery. Drug Dev. Ind. Pharm. 1998, 24 (11), 979–993.
    OpenUrlPubMedGoogle Scholar
  99. 99.↵
    1. Jain R.,
    2. Shah N. H.,
    3. Malick A. W.,
    4. Rhodes C. T.
    Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev. Ind. Pharm. 1998, 24 (8), 703–727.
    OpenUrlPubMedGoogle Scholar
  100. 100.↵
    1. Middleton J. C.,
    2. Tipton A. J.
    Synthetic biodegradable polymers as medical devices. Medical Plastics Biomaterials 1998, 5 (2) 30–39.
    OpenUrlGoogle Scholar
  101. 101.↵
    1. Pettit D. K.,
    2. Lawter J. R.,
    3. Huang W. J.,
    4. Pankey S. C.,
    5. Nightlinger N. S.,
    6. Lynch D. H.,
    7. Schuh J. A. C. L.,
    8. Morrissey P. J.,
    9. Gombotz W. R.
    Characterization of poly(glycolide-co-D,L-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res. 1997, 14 (10), 1422–1430.
    OpenUrlCrossRefPubMedGoogle Scholar
  102. 102.↵
    1. Katre N. V.,
    2. Asherman J.,
    3. Schaefer H.
    Multivesicular liposome (DepoFoam™) technology for the sustained delivery of Insulin-like Growth Factor—I. J. Pharm. Sci. 1998, 87 (11), 1341–1346.
    OpenUrlPubMedGoogle Scholar
  103. 103.↵
    1. Wang P.,
    2. Johnston T. P.
    Sustained-release Interleukin-2 following intramuscular injection in Rats. Int. J. Pharm. 1995, 113 (1), 73–81.
    OpenUrlGoogle Scholar
  104. 104.↵
    1. Moghimi S. M.
    mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block co-polymers. Adv. Drug Deliv. Rev. 1995, 16 (2–3), 183–193.
    OpenUrlGoogle Scholar
  105. 105.↵
    1. Zheng J. Y.,
    2. Bosch H. W.
    Sterile filtration of NanoCrystal™ drug formulations. Drug Dev. Ind. Pharm. 1997, 23 (11), 1087–1093.
    OpenUrlGoogle Scholar
  106. 106.↵
    1. Knepp V. M.,
    2. Muchnik A.,
    3. Oldmark S.,
    4. Kalashnikova L.
    Stability of non-aqueous suspension formulations of plasma-derived factor IX and recombinant human alpha interferon at elevated temperatures. Pharm. Res. 1998, 15 (7), 1090–1095.
    OpenUrlPubMedGoogle Scholar
  107. 107.↵
    1. Sullivan S. A.,
    2. Gilley R. M.,
    3. Gibson J. W.,
    4. Tipton A. J.
    Delivery of taxol and other antineoplastic agents from a novel system based on sucrose acetate isobutyrate. Pharm. Res. 1997, 14 (11), 291.
    OpenUrlGoogle Scholar
  108. 108.↵
    1. Gombotz W. R.,
    2. Pettit D. K.
    Biodegradable polymers for proteins and peptide drug delivery. Bioconjug. Chem. 1995, 6 (4), 332–351.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  109. 109.↵
    1. Apte S. R.,
    2. Ogwu S. O.
    A review and classification of emerging excipients in parenteral medications. Pharm. Technol. 2003, 27 (3), 46–60.
    OpenUrlGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 3
May/June 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions
Sandeep Nema, Ronald J. Brendel
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 287-332; DOI: 10.5731/pdajpst.2011.00634
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • I. Introduction
    • II. Types of Excipients
    • III. Regulatory Perspective
    • IV. Criteria for the Selection of Excipient and Supplier
    • V. Safety Issues
    • VI. Future Directions
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Comparison of Excipients in Approved Parenteral Products and Their Maximum Daily Exposure Values
  • Risk-based Strategy to Determine Testing Requirement for the Removal of Residual Process Reagents as Process-related Impurities in Bioprocesses
  • Strategies to Address Low Drug Solubility in Discovery and Development
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions
Sandeep Nema, Ronald J. Brendel
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 287-332; DOI: 10.5731/pdajpst.2011.00634

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.