Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Supercritical Fluid Technology: Concepts and Pharmaceutical Applications

Praful Balavant Deshpande, G. Aravind Kumar, Averineni Ranjith Kumar, Gopal Venkatesh Shavi, Arumugam Karthik, Meka Sreenivasa Reddy and Nayanabhirama Udupa
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 333-344; DOI: https://doi.org/10.5731/pdajpst.2011.00717
Praful Balavant Deshpande
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: prafuldeshpande@gmail.com
G. Aravind Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Averineni Ranjith Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gopal Venkatesh Shavi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arumugam Karthik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Meka Sreenivasa Reddy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nayanabhirama Udupa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Davies O. R.,
    2. Lewis A. L.,
    3. Whitaker M. J.,
    4. Tai H.,
    5. Shakesheff K. M.,
    6. Howdle S. M.
    Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 2008, 60 (3), 373–387.
    OpenUrlPubMed
  2. 2.↵
    1. Yasuji T.,
    2. Takeuchi H.,
    3. Kawashima Y.
    Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv. Drug Deliv. Rev. 2008, 60 (3), 388–398.
    OpenUrlPubMed
  3. 3.↵
    1. Pasquali I.,
    2. Bettini R.,
    3. Giordano F.
    Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv. Drug Deliv. Rev. 2008, 60 (3), 399–410.
    OpenUrlPubMed
  4. 4.↵
    1. Pasquali I.,
    2. Bettini R.
    Are pharmaceutics really going supercritical? Int. J. Pharm. 2008, 364 (2), 176–187.
    OpenUrlPubMed
  5. 5.↵
    1. Hill J. H.,
    2. Petrucci R. H.
    Chapter 11. In General Chemistry: An Integrated Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ; 1996; (accessed at http://www.slidefinder.net/c/chapter_states_matter_intermolecular_forces/12886275).
  6. 6.↵
    1. Swarbrick J.
    1. Mayo A. S.,
    2. Kompella U. B.
    Supercritical fluid technology in pharmaceutical research. In Encyclopedia of Pharmaceutical Technology: Third Edition; Swarbrick J. Ed.; Informa Healthcare: Mortimer Street, London; 2006; pp 3568–3582.
  7. 7.↵
    1. Vasukumar K.,
    2. Bansal K. A.
    Supercritical fluid technology in pharmaceutical research. CRIPS 2003, 4, 8–12.
    OpenUrl
  8. 8.↵
    1. Lang Q.,
    2. Wai C. M.
    Supercritical fluid extraction in herbal and natural product studies: a practical review. Talanta 2001, 53 (4), 771–782.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Palakodaty S.,
    2. York P.
    ; Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res. 1999, 16 (7), 976–985.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Lee L. Y.,
    2. Wang C. H.,
    3. Smith K. A.
    Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. J. Controlled Release 2008, 125 (2), 96–106.
    OpenUrlPubMed
  11. 11.↵
    1. Kompella U. B.,
    2. Koushik K.
    Preparation of drug delivery systems using supercritical fluid technology. Crit. Rev. Ther. Drug Carr. Syst. 2001, 18 (2), 173–199.
    OpenUrlPubMed
  12. 12.↵
    1. Phillips E. M.,
    2. Stella V. J.
    Rapid expansion from supercritical solutions application to pharmaceutical processes. Int. J. Pharm. 2003, 94 (1–3), 1–10.
    OpenUrl
  13. 13.↵
    1. Kayrak D.,
    2. Akman U.,
    3. Hortac S.
    Micronisation of ibuprofen by RESS. J. Supercrit. Fluids 2003, 26 (1), 17–31.
    OpenUrl
  14. 14.↵
    1. Meziani M. J.,
    2. Pathak P.,
    3. Beacham F.,
    4. Allard L. F.,
    5. Sun Y. P.
    Nanoparticle formation in rapid expansion of water-in-supercritical carbon dioxide microemulsion into liquid solution. J. Supercrit. Fluids 2005, 34 (1), 91–97.
    OpenUrl
  15. 15.↵
    1. Byrappa K.,
    2. Ohara S.,
    3. Adschiri T.
    Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. Adv. Drug Deliv. Rev. 2008, 60 (3), 299–327.
    OpenUrlPubMed
  16. 16.↵
    1. Gallagher P. M.,
    2. Coffey M. P.,
    3. Krukonis V. J.,
    4. Klasutis N.
    Gas Antisolvent Recrystallization: New Process to Recrystallize Compounds Insoluble in Supercritical Fluids. In Supercritical Fluid Science and Technology; ACS Symposium Series; American Chemical Society: Washington, D.C., 1989, Vol. 406; pp 334–354.
    OpenUrl
  17. 17.↵
    1. Moshashaee S.,
    2. Bisrat M.,
    3. Forbes R. T.,
    4. Nyqvist H.,
    5. York P.
    Supercritical fluid processing of proteins. I: Lysozyme precipitation from organic solution. Eur. J. Pharm. Sci. 2000, 11 (3), 239–245.
    OpenUrlPubMed
  18. 18.↵
    1. Garay I.,
    2. Pochevillea A.,
    3. Madariagaa L.
    Polymeric microparticles prepared by supercritical antisolvent precipitation. Powder Technol. 2010, 197 (3), 211–217.
    OpenUrl
  19. 19.↵
    1. Reverchon E.,
    2. Adami R.
    Nanomaterials and supercritical fluids. J. Supercrit. Fluids 2006, 37 (1), 1–22.
    OpenUrl
  20. 20.↵
    1. York P.,
    2. Hanna M.,
    3. Shekunov B. Y.,
    4. Humphreys G. O.
    Microfine particle formation by SEDS (solution enhanced dispersion by supercritical fluids): scale up by design. Proc. Resp. Drug Delivery 1998, VI, 169–175.
  21. 21.↵
    1. York P.
    Strategies for particle design using supercritical fluid technologies. Pharm. Sci. Technol. Today 1999, 2 (11), 430–440.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Martin T. M.,
    2. Bandi N.,
    3. Shulz R.,
    4. Roberts C. B.,
    5. Kompella U. B.
    Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech 2002, 3 (3), 16–26.
    OpenUrl
  23. 23.↵
    1. Zhiyi L.,
    2. Jingzhi J.,
    3. Xuewu L.,
    4. Huihua T.,
    5. Wei W.
    Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology. J. Supercrit. Fluids 2009, 48 (3), 247–252.
    OpenUrl
  24. 24.↵
    1. Rodrigues M. A.,
    2. Li J.,
    3. Padrela L.,
    4. Almeida A.,
    5. Matos H. A.,
    6. Azevedo E. G.
    Anti-solvent effect in the production of lysozyme nanoparticles by supercritical fluid-assisted atomization processes. J. Supercrit. Fluids 2009, 48 (3), 253–260.
    OpenUrl
  25. 25.↵
    1. Padrela L.,
    2. Rodrigues M. A.,
    3. Velaga S. P.,
    4. Matos H. A.,
    5. de Azevedo E. G.
    Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur. J. Pharm. Sci. 2009, 38 (1), 9–17.
    OpenUrlPubMed
  26. 26.↵
    1. Charoenchaitrakool M.,
    2. Dehghani F.,
    3. Foster N. R.
    Micronization by rapid expansion of supercritical solution to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39 (12), 4794–4802.
    OpenUrl
  27. 27.↵
    1. Reverchon E.,
    2. Della Porta G.
    Production of antibiotics by supercritical assisted atomization. J. Supercrit. Fluids 2003, 26 (3), 243–252.
    OpenUrl
  28. 28.↵
    1. Duarte A. R.,
    2. Costa M. S.,
    3. Simplício A. L.,
    4. Cardoso M. M.,
    5. Duarte C. M.
    Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. Int. J. Pharm. 2006, 308 (1–2), 168–174.
    OpenUrlPubMed
  29. 29.↵
    1. Reverchon E.,
    2. Lamberti G.,
    3. Antonacci A.
    Supercritical fluid assisted production of HPMC composite microparticles. J. Supercrit. Fluids 2008, 46 (2), 185–196.
    OpenUrl
  30. 30.↵
    1. Pathak P.,
    2. Meziani M. J.,
    3. Desai T.,
    4. Sun Y.-P.
    Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids 2008, 37 (3), 279–286.
    OpenUrl
  31. 31.↵
    1. Kim M. S.,
    2. Jin S. J.,
    3. Kim J. S.,
    4. Park H. J.,
    5. Song H. S.,
    6. Neubert R. H.,
    7. Hwang S. J.
    Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2008, 69 (2), 454–465.
    OpenUrlPubMed
  32. 32.↵
    1. Falk R.,
    2. Randolph T. W.,
    3. Meyer J. D.,
    4. Kelly R. M.,
    5. Manning M. C.
    Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J. Controlled Release 1997, 44 (1), 77–85.
    OpenUrlCrossRef
  33. 33.↵
    1. Tservistas M.,
    2. Levy M. S.,
    3. Lo-Yim M. Y.,
    4. O'Kennedy R. D.,
    5. York P.,
    6. Humphrey G. O.,
    7. Hoare M.
    The formation of plasmid DNA loaded pharmaceutical powders using supercritical fluid technology. Biotechnol. Bioeng. 2000, 72 (1), 12–18.
    OpenUrl
  34. 34.↵
    1. Debenedetti P. G.,
    2. Lim G. B.,
    3. Prud'Homme R. K.
    Preparation of Protein Microparticles by Precipitation. U.S. Patent 6,063,910, 2000.
  35. 35.↵
    1. Turk M.,
    2. Hilsa P.,
    3. Helfgena B.,
    4. Schabera K.,
    5. Martin H. J.,
    6. Wahl M. A.
    Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002, 22 (1), 75–84.
    OpenUrl
  36. 36.↵
    1. Sanganwar G. P.,
    2. Gupta R. B.
    Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Int. J. Pharm. 2008, 360 (1–2), 213–218.
    OpenUrlPubMed
  37. 37.↵
    1. Badens E.,
    2. Majerik V.,
    3. Horváth G.,
    4. Szokonya L.,
    5. Bosc N.,
    6. Teillaud E.,
    7. Charbit G.
    Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. Int. J. Pharm. 2009, 377 (1–2), 25–34.
    OpenUrlPubMed
  38. 38.↵
    1. Lee S. Y.,
    2. Jung I. I.,
    3. Kim J. K.,
    4. Lim G. B.,
    5. Ryu J. H.
    Preparation of itraconazole/HP-β-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluids 2008, 44 (3), 400–408.
    OpenUrl
  39. 39.↵
    1. Sauceau M.,
    2. Rodier E.,
    3. Fages J.
    Preparation of inclusion complex of piroxicam with cyclodextrin by using supercritical carbon dioxide. J. Supercrit. Fluids 2008, 47 (2), 326–332.
    OpenUrl
  40. 40.↵
    1. Sethia S.,
    2. Squillante E.
    Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 2004, 272 (1–2), 1–10.
    OpenUrlPubMed
  41. 41.↵
    1. Bounaceura A.,
    2. Rodier E.,
    3. Fages J.
    Maturation of a ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41 (3), 429–439.
    OpenUrl
  42. 42.↵
    1. Jun S. W.,
    2. Kim M. S.,
    3. Kim J. S.,
    4. Park H. J.,
    5. Lee S.,
    6. Woo J. S.,
    7. Hwang S. J.
    Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2007, 66 (3), 413–421.
    OpenUrlPubMed
  43. 43.↵
    1. Perman C. A.,
    2. Riechert M. E.
    Methods of Polymer Impregnation. U.S. Patent 5,340,614, 1994.
  44. 44.↵
    1. Uzer S.,
    2. Akman U.,
    3. Hortacsu O.
    Polymer swelling and impregnation using supercritical CO2: a model-component study towards producing controlled-release drugs. J. Supercrit. Fluids 2006, 38 (1), 119–128.
    OpenUrl
  45. 45.↵
    1. Banchero M.,
    2. Manna L.,
    3. Ronchetti S.,
    4. Campanelli P.,
    5. Ferri A.
    Supercritical solvent impregnation of piroxicam on PVP at various polymer molecular weights. J. Supercrit. Fluids 2009, 49 (2), 271–278.
    OpenUrl
  46. 46.↵
    1. Braga M. E. M.,
    2. Vaz Pato M. T.,
    3. Costa Silva H. S. R.,
    4. Ferreira E. I.,
    5. Gil M. H.,
    6. Duarte C. M. M.,
    7. de Sousa H. C.
    Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives. J. Supercrit. Fluids 2008, 44 (2), 245–257.
    OpenUrl
  47. 47.↵
    1. Dias A. M.,
    2. Braga M. E.,
    3. Seabra I. J.,
    4. Ferreira P.,
    5. Gil M. H.,
    6. de Sousa H. C.
    Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm. 2011 (Epub ahead of print).
  48. 48.↵
    1. Otake K.,
    2. Imura T.,
    3. Sakai H.,
    4. Abe M.
    Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir 2001, 17 (13), 3898–3901.
    OpenUrl
  49. 49.↵
    1. Kadimi U. S.,
    2. Balasubramanian D. R.,
    3. Ganni U. R.,
    4. Balaraman M.,
    5. Govindarajulu V.
    In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide–mediated process. Nanomedicine 2007, 3 (4), 273–280.
    OpenUrlPubMed
  50. 50.↵
    1. Kunastitchai S.,
    2. Pichert L.,
    3. Sarisuta N.,
    4. Müller B. W.
    Application of aerosol solvent extraction system (ASES) process for preparation of liposomes in a dry and reconstitutable form. Int. J. Pharm. 2006, 316 (1–2), 93–101.
    OpenUrlPubMed
  51. 51.↵
    1. Daintree L. S.,
    2. Kordikowski A.,
    3. York P.
    Separation processes for organic molecules using SCF Technologies. Adv. Drug Deliv. Rev. 2008, 60 (3), 351–372.
    OpenUrlPubMed
  52. 52.↵
    1. Reverchon E.,
    2. Iolanda D. M.
    Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38 (2), 146–166.
    OpenUrl
  53. 53.↵
    1. Klime J.,
    2. Sochor J.,
    3. Kríz J.
    A study of the conditions of the supercritical fluid extraction in the analysis of selected anti-inflammatory drugs in plasma. Farmaco 2002, 57 (2), 117–22.
    OpenUrlPubMed
  54. 54.↵
    1. Lawrence J. K.,
    2. Larsen A. K. Jr..,
    3. Tebbett I. R.
    Supercritical fluid extraction of benzodiazepines in solid dosage forms. Anal. Chim. Acta. 1994, 288 (1–2), 123–130.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 3
May/June 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Supercritical Fluid Technology: Concepts and Pharmaceutical Applications
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 17 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Supercritical Fluid Technology: Concepts and Pharmaceutical Applications
Praful Balavant Deshpande, G. Aravind Kumar, Averineni Ranjith Kumar, Gopal Venkatesh Shavi, Arumugam Karthik, Meka Sreenivasa Reddy, Nayanabhirama Udupa
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 333-344; DOI: 10.5731/pdajpst.2011.00717

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Supercritical Fluid Technology: Concepts and Pharmaceutical Applications
Praful Balavant Deshpande, G. Aravind Kumar, Averineni Ranjith Kumar, Gopal Venkatesh Shavi, Arumugam Karthik, Meka Sreenivasa Reddy, Nayanabhirama Udupa
PDA Journal of Pharmaceutical Science and Technology May 2011, 65 (3) 333-344; DOI: 10.5731/pdajpst.2011.00717
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Supercritical Fluid Technology (SFT) Techniques
    • 3. Pharmaceutical Applications of SCF Technology
    • 4. Scale-up and GMP Processing
    • 5. Concluding Remarks
    • Declaration of Interest
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire