Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Modes of Degradation and Impurity Characterization in rhPTH (1–34) during Stability Studies

Ruchi Kothari, Vinod Kumar, Rajender Jena, Rashbehari Tunga and Binita Shrivastava Tunga
PDA Journal of Pharmaceutical Science and Technology July 2011, 65 (4) 348-362; DOI: https://doi.org/10.5731/pdajpst.2011.00745
Ruchi Kothari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vinod Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajender Jena
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rashbehari Tunga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Binita Shrivastava Tunga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: binita.tunga72@hotmail.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

During storage of recombinant human parathyroid hormone (rhPTH) (amino acid residues 1–34) at 25 ± 2 °C, several impurities were obtained, which were detected by the tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high-performance liquid chromatography (RP-HPLC) methods. To characterize the impurities generated, forceful chemical oxidation and deamidation was done. The oxidized positions were characterized by cyanogen bromide (CNBr) cleavage followed by liquid chromatography/mass spectrometry (LCMS) and further confirmed through N-terminal sequencing. Three oxidized variants were observed: sulfoxide of Met8 and Met18 and a variant comprising sulfoxide forms of both the methionine residues. LCMS results confirmed the presence of deamidated (+1 Da) and succinimide (−17 Da) variants. The low molecular weight impurities observed by tricine SDS-PAGE was confirmed to be peptide fragments by N-terminal sequencing and LCMS, resulting from cleavage at the C-terminal of asparagine (Asn)16, Asn33, and Asp30. Studies showed that rhPTH (1–34) undergoes oxidation, deamidation, and peptide bond cleavage during storage at pH 4.0 in acetate buffer.

LAY ABSTRACT: Unlike currently licensed therapies to manage osteoporosis, parathyroid hormone (PTH) and its analogs represent a new class of anabolic agents, which act primarily to inhibit bone resorption and remodeling. The hormone's recombinant form is a bioactive peptide, 1–34 residues, which is inherently very unstable. Prior understanding of the molecular degradation pathway will help in development of a process that will yield a better product with respect to its quality and stability. The current work focuses on detailed characterization of the product-related impurities generated during storage of recombinant human PTH. The study depicted the various routes through which the molecule can degrade during its shelf life. Through a combination of forced degradation and accelerated study, it was established that the impurities were generated owing to oxidation, deamidation, and peptide bond cleavage of/at various amino acid residues.

Until this study, it was presumed that oxidation is the primary route of degradation in PTH and most of the published reports were on native (1–84) forms of the hormone. The present research confirms that the recombinant hormone (1–34) degraded not only because of oxidation but that deamidation and peptide bond cleavage are also prominent modes of degradation. Therefore, owing to the unstable nature of the molecule it is suggested that stringent conditions should be maintained during manufacturing to obtain a stable molecule with fewer impurities.

  • Peptide
  • Oxidation
  • Deamidation
  • Peptide bond cleavage
  • Tricine SDS-PAGE
  • RP-HPLC
  • LCMS
  • N-terminal sequencing
  • © PDA, Inc. 2011
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 4
July/August 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modes of Degradation and Impurity Characterization in rhPTH (1–34) during Stability Studies
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 11 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Modes of Degradation and Impurity Characterization in rhPTH (1–34) during Stability Studies
Ruchi Kothari, Vinod Kumar, Rajender Jena, Rashbehari Tunga, Binita Shrivastava Tunga
PDA Journal of Pharmaceutical Science and Technology Jul 2011, 65 (4) 348-362; DOI: 10.5731/pdajpst.2011.00745

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Modes of Degradation and Impurity Characterization in rhPTH (1–34) during Stability Studies
Ruchi Kothari, Vinod Kumar, Rajender Jena, Rashbehari Tunga, Binita Shrivastava Tunga
PDA Journal of Pharmaceutical Science and Technology Jul 2011, 65 (4) 348-362; DOI: 10.5731/pdajpst.2011.00745
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Container Closure Integrity of Vial Primary Packaging Systems under Frozen Storage Conditions: A Case Study
  • Advances in Large Volume Subcutaneous Injections: A Pilot Tolerability Study of an Innovative Needle-Free Injection Platform
  • Quantification and Stability Impact Assessment of Drop Stresses in Biologic Drug Products
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire