Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Pulmonary Drug Delivery: Novel Pharmaceutical Technologies Breathe New Life into the Lungs

Basavaraj K. Nanjwade, Sagar A. Adichwal, Kishori R. Gaikwad, Kemy A. Parikh and F. V. Manvi
PDA Journal of Pharmaceutical Science and Technology September 2011, 65 (5) 513-534; DOI: https://doi.org/10.5731/pdajpst.2011.00704
Basavaraj K. Nanjwade
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bknanjwade@yahoo.co.in
Sagar A. Adichwal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kishori R. Gaikwad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kemy A. Parikh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. V. Manvi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Bivas-Benita M.,
    2. Zwier R. I.,
    3. Junginger H. E.,
    4. Borchard G.
    Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur. J. Pharm. Biopharm. 2005, 61 (3), 214–218.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Smyth H. D.,
    2. Hickey A. J.
    Carriers in drug powder delivery: implications for inhalation system design. Am. J. Drug Deliv. 2005, 3 (2), 117–132.
    OpenUrl
  3. 3.↵
    1. Jaspart S.,
    2. Bertholet P.,
    3. Delattre L.,
    4. Evrard B.
    Study of Solid Lipid Microparticles as Sustained Release Delivery System for Pulmonary Administration. Presented at the 15th International Symposium on Microencapsulation, Parma, Italy, 2005, pp 241–242.
  4. 4.↵
    1. Li X.,
    2. Jasti B. R.
    1. Wamsley A.
    Ligand-Based Targeting Approaches to Drug Delivery. In Design of Controlled Release Drug Delivery Systems; Li X., Jasti B. R. Eds. The McGraw-Hill Companies, Inc.: New York, 2006; pp 377–378.
  5. 5.↵
    1. Smyth H.,
    2. Saleem I.,
    3. Donovan M.
    Emerging carriers for pulmonary drug delivery. AAPS Newsmagazine 2006, August, 12–15.
  6. 6.↵
    1. Li X.,
    2. Jasti B. R.
    1. Kokate K.,
    2. Marasanapalle V. O.,
    3. Jasti B. R.,
    4. Li X.
    Physiological and Biochemical Barriers to Drug Delivery. In Design of Controlled Release Drug Delivery Systems; Li X., Jasti B. R. Eds.; The McGraw-Hill Companies, Inc.: New York, 2006; pp 63–64.
  7. 7.↵
    1. Tong H. H. Y.,
    2. Chow A. H. L.
    Control of physical forms of drug particles for pulmonary delivery by spray drying and supercritical fluid processing. KONA 2006, 24, 27–40.
    OpenUrl
  8. 8.↵
    1. Agu R. U.,
    2. Ugwoke M. I.,
    3. Armand M.,
    4. Kinget R.,
    5. Verbeke N.
    The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2001, 2 (4), 198–209.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Torchilin V. P.
    1. Labiris N. R.,
    2. Bosco A. P.,
    3. Dolovich M. B.
    Aerosols as Drug Carriers. In Nanoparticulates as Drug Carriers; Torchilin V. P. Ed.; Imperial College Press: London, 2006; pp 367–395.
  10. 10.↵
    1. Folkesson H. G.,
    2. Matthey M. A.,
    3. Westrom B. R.,
    4. Kim K. J.,
    5. Karlsson B. W.,
    6. Hastings R. H.
    Alveolar epithelial clearance of protein. Appl. Physiol. 1996, 80 (5), 1431–1445.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Sélam J. L.
    Inhaled insulin: promises and concerns. J. Diabetes Sci. Technol. 2008, 2 (2), 311–315.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    ACGIH. Threshold Limit Values and Biological Exposure Indices; ACGIH: Cincinnati, OH, 1997.
  13. 13.↵
    1. Cryan S. A.
    Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005, 7 (1), E20–E41.
    OpenUrlPubMed
  14. 14.↵
    1. Li X.,
    2. Jasti B. R.
    1. Mueller-Walz R.
    Device Controlled Delivery of Powders. In Design of Controlled Release Drug Delivery Systems; Li X., Jasti B. R. Eds.; The McGraw-Hill Companies, Inc.: New York, 2006; pp 231–268.
  15. 15.↵
    1. Telko M. J.,
    2. Hickey A. J.
    Dry powder inhaler formulation. Respiratory Care 2005, 50 (9), 1209–1227.
    OpenUrlPubMed
  16. 16.↵
    1. Wetterlin K.
    Turbuhaler: a new powder inhaler for administration of drugs to the airways. Pharm. Res. 1998, 5 (8), 506–508.
    OpenUrl
  17. 17.↵
    1. Prime D.,
    2. Atkins P. J.,
    3. Slater A.,
    4. Sumby B.
    Review of dry powder inhalers. Adv. Drug Del. Rev. 1997, 26 (1), 51–58.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Newman S. P.
    Principles of metered-dose inhaler design. Respiratory Care 2005, 50 (9), 1177–1190.
    OpenUrlPubMed
  19. 19.↵
    1. Smyth H. D.
    The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev. 2003, 55 (7), 807–828.
    OpenUrlPubMed
  20. 20.↵
    1. Noakes T.
    Medical aerosol propellants. J. Fluorine Chem. 2002, 118 (1–2), 35–45.
    OpenUrl
  21. 21.↵
    1. Ganderton D.,
    2. Jones T.
    1. Hallworth G. W.
    The Formulation and Evaluation of Pressurised Metered Dose Inhalers. In Drug Delivery to the Respiratory Tract; Ganderton D., Jones T. Eds.; Ellis Horwood: Chichester, U.K., 1987; pp 87–118.
  22. 22.↵
    1. Lenney J.,
    2. Innes J. A.,
    3. Crompton G. K.
    Inappropriate inhaler use: assessment of use and patient preference of seven inhalation devices. Respir. Med. 2000, 94 (5), 496–500.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.
    1. Newman S. P.,
    2. Weisz A. W.,
    3. Talaee N.,
    4. Clarke S. W.
    Improvement of drug delivery with a breath actuated pressurised aerosol for patients with poor inhaler technique. Thorax 1991, 46 (10), 712–716.
    OpenUrlAbstract/FREE Full Text
  24. 24.
    1. Newman S. P.,
    2. Steed K. P.,
    3. Hooper G.,
    4. Jones J. I.,
    5. Upchurch F. C.
    Improved targeting of beclomethasone dipropionate (250 micrograms metered dose inhaler) to the lungs of asthmatics with the Spacehaler. Respir. Med. 1999, 93 (6), 424–431.
    OpenUrlPubMed
  25. 25.
    1. Leach C. L.,
    2. Davidson P. J.,
    3. Boudreau R. J.
    Improved airway targeting with the CFC-free HFA-beclomethasone metered dose inhaler compared with CFC beclomethasone. Eur. Respir. J. 1998, 12 (6), 1346–1353.
    OpenUrlAbstract
  26. 26.
    1. Dickinson P. A.,
    2. Howells S. W.,
    3. Kellaway I. W.
    Novel nanoparticles for pulmonary drug administration. J. Drug Target 2001, 9 (4), 295–302.
    OpenUrlPubMedWeb of Science
  27. 27.
    1. Kraft W. K.,
    2. Steiger B.,
    3. Beussink D.,
    4. Quiring J. N.,
    5. Fitzgerald N.,
    6. Greenberg H. E.,
    7. Waldman S. A.
    The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J Clin. Pharmacol. 2004, 44 (1), 67–72.
    OpenUrlCrossRefPubMed
  28. 28.
    1. Videira M. A.,
    2. Botelho M. F.,
    3. Santos A. C.,
    4. Gouveia L. F.,
    5. Pedrosos De Lima J. J,
    6. Almeida A. J.
    Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target 2002, 10 (8), 607–613.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.
    1. Lamm M. E.
    Interactions of antigens and antibodies at mucosal surfaces. Ann. Rev. Microbiol. 1997, 51, 311–340.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.
    1. Vila A.,
    2. Sanchez A.,
    3. Janes K.,
    4. Behrens I.,
    5. Kissel T.,
    6. Vila J. L.,
    7. Alonso M. J.
    Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 2004, 57 (1), 123–131.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.
    1. Vila A.,
    2. Sanchez A.,
    3. Evora C.,
    4. Soriano I.,
    5. Vila J. J.,
    6. Alonso M. J.
    PEG-PLA nanoparticles as carriers for nasal vaccine delivery. Aerosol Med. 2004, 17 (2), 174–185.
    OpenUrl
  32. 32.
    1. Jung T.,
    2. Kamm W.,
    3. Breitenbach A.,
    4. Hungerer K. D.,
    5. Hundt E.,
    6. Kissel T.
    Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graftpoly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res. 2001, 18 (3), 352–360.
    OpenUrlPubMed
  33. 33.
    1. Pinto-Alphandary P.,
    2. Andremont A.,
    3. Couvreur P.
    Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int. J. Antimicrobial Agents 2000, 13 (3), 155–168.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.
    1. Kumar M.,
    2. Kong X.,
    3. Behera A. K.,
    4. Hellermann G. R.,
    5. Lockey R. F.,
    6. Mohapatra S. S.
    Chitosan IFN-γ-pDNA nanoparticle (CIN) therapy for allergic asthma. Gen. Vacc. Ther. 2003, 1 (1), 3–11.
    OpenUrl
  35. 35.↵
    1. Zeng A.,
    2. Martin C. G.,
    3. Marriott C.
    The controlled delivery of drugs to the lung. Int. J. Pharm. 1995, 124 (2), 149–164.
    OpenUrl
  36. 36.↵
    1. Suarez S.,
    2. Gonzalez-Rothi R. J.,
    3. Schreier H.,
    4. Hochhaus G.
    Effect of dose and release rate on pulmonary targeting of liposomal triamcinolone acetonide phosphate. Pharm. Res. 1998, 15 (3), 461–465.
    OpenUrlPubMed
  37. 37.↵
    1. Fielding R.,
    2. Ahra R. M.
    Factors affecting the release rate of terbutaline from liposome formulations after intratracheal instillation in the guinea pig. Pharm. Res. 1992, 9 (2), 220–223.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Canonico A. E.,
    2. Plitman J. D.,
    3. Conary J. T.,
    4. Meyrick B. O.,
    5. Brigham K. L.
    No lung toxicity after repeated aerosol or intravenous delivery of plasmidcationic liposome complexes. J. Appl. Physiol. 1994, 77 (1), 415–419.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Eastman S. J.,
    2. Tousignant J. D.,
    3. Lukason M. J.,
    4. Murray H.,
    5. Siegel C. S.,
    6. Constantino P.,
    7. Harris D. J.,
    8. Cheng S. H.,
    9. Scheule R. K.
    Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complex. Hum. Gene Ther. 1997, 8 (3), 313–322.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. McLachlan G.,
    2. Davidson D. J.,
    3. Stevenson B. J.,
    4. Dickinson P.,
    5. Davidson-Smith H.,
    6. Dorin J. R.,
    7. Porteous D. J.
    Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. Gene Ther. 1995, 2 (9), 614–622.
    OpenUrlPubMedWeb of Science
  41. 41.↵
    1. McCluskie M. J.,
    2. Chu Y.,
    3. Xia J. L.,
    4. Jessee J.,
    5. Gebyehu G.,
    6. Davis H. L.
    Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA. Antisense Nucleic Acid Drug Dev. 1998, 8 (5), 401–414.
    OpenUrlPubMedWeb of Science
  42. 42.↵
    1. Zou Y.,
    2. Zong G.,
    3. Ling Y. H.,
    4. Perez-Soler R.
    Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther. 2000, 7 (5), 683–696.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Stribling S.,
    2. Brunette E.,
    3. Liggitt D.,
    4. Gaensler K.,
    5. Debs R.
    Aerosol gene delivery in vivo. Proc. Natl. Acad. Sci. USA 1992, 89 (23), 11277–11281.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Schreier H.,
    2. Mobley W. C.,
    3. Concessio N.,
    4. Hickey A. J.,
    5. Niven R. W.
    Formulation and in vitro performance of liposome powder aerosols. STP Pharma Sciences 1994, 4 (1), 38–44.
    OpenUrl
  45. 45.↵
    1. Joshi M.,
    2. Misra A.
    Dry powder inhalation of liposomal Ketotifen fumarate: formulation and characterization. Int. J. Pharm. 2001, 223 (1–2), 15–27.
    OpenUrlPubMed
  46. 46.↵
    1. Skalko-Basnet N.,
    2. Pavelic Z.,
    3. Becirevic-Lacan M.
    Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev. Ind. Pharm. 2000, 26 (12), 1279–1284.
    OpenUrlPubMed
  47. 47.↵
    1. Seville P. C.,
    2. Kellaway I. W.,
    3. Birchall J. C.
    Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J. Gene Med. 2002, 4 (4), 428–437.
    OpenUrlPubMed
  48. 48.↵
    1. Kim J. C.,
    2. Kim J. D.
    Preparation by spray-drying of amphotericin Bphospholipid composite particles and their anticellular activity. Drug Deliv. 2001, 8 (3), 143–147.
    OpenUrlPubMed
  49. 49.
    1. Letsou G. V.,
    2. Safi H. J.,
    3. Reardon M. J.,
    4. Ergenoglu M.,
    5. Li Z.,
    6. Klonaris C. N.,
    7. Baldwin J. C.,
    8. Gilbert B. E.,
    9. Waldrep J. C.
    Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression. Ann. Thorac. Surg. 1999, 68 (6), 2044–2048.
    OpenUrlPubMed
  50. 50.
    1. Liu F. Y.,
    2. Shao Z.,
    3. Kildsig D. O.,
    4. Mitra A. K.
    Pulmonary delivery of free and liposomal insulin. Pharm. Res. 1993, 10 (2), 228–232.
    OpenUrlCrossRefPubMedWeb of Science
  51. 51.
    1. Padmanabhan R. V.,
    2. Gudapaty R.,
    3. Liener E. E.,
    4. Schwartz B. A.,
    5. Hoidal J. R.
    Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am. Rev. Respir. Dis. 1985, 132 (1), 164–167.
    OpenUrlPubMedWeb of Science
  52. 52.
    1. Khanna C.,
    2. Hasz D. E.,
    3. Klausner J. S.,
    4. Anderson P. M.
    Aerosol delivery of interleukin 2 liposomes is nontoxic and biologically effective: canine studies. Clin. Cancer Res. 1996, 2 (4), 721–734.
    OpenUrlAbstract
  53. 53.
    1. Griffiths G. D.,
    2. Phillips G. J.,
    3. Bailey S. C.
    Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine 1999, 17 (20–21), 2562–2568.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Colletier J. P,
    2. Chaize B.,
    3. Winterhalter M.,
    4. Fournier D.
    Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2002, 2 (9), 1–8.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Galovic R. R.,
    2. Barisic K.,
    3. Pavelic Z.,
    4. Zanic G. T.,
    5. Cepelak I.,
    6. Filipovic-Grcic J.
    High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur. J. Pharm. Sci. 2002, 15 (5), 441–448.
    OpenUrlPubMed
  56. 56.↵
    1. Wagner A.,
    2. Vorauer-Uhl K.,
    3. Kreismayr G.,
    4. Katinger H.
    Enhanced protein loading into liposomes by the multiple crossflow injection technique. J. Liposome Res. 2002, 12 (3), 271–283.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Mozafari M. R.,
    2. Reed C. J.,
    3. Rostron C.,
    4. Kocum C.,
    5. Piskin E.
    Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell Mol. Biol. Lett. 2002, 7 (2), 243–244.
    OpenUrlPubMed
  58. 58.↵
    1. Mozafari M. R.,
    2. Hasirci V.
    Mechanism of calcium ion induced multilamellar vesicle-DNA interaction. J. Microencapsul. 1998, 15 (1), 55–65.
    OpenUrlPubMed
  59. 59.↵
    1. Mozafari M. R.,
    2. Zareie M. H.,
    3. Piskin E.,
    4. Hasirci V.
    Formation of supramolecular structures by negatively charged liposomes in the presence of nucleic acids and divalent cations. Drug Deliv. 1998, 5 (2), 135–141.
    OpenUrlPubMed
  60. 60.↵
    1. Zareie M. H.,
    2. Mozafari M. R.,
    3. Hasirci V.,
    4. Piskin E.
    Scanning tunnelling microscopy investigation of liposome-DNA-Ca2+ complexes. J. Liposome Res. 1997, 7 (4), 491–502.
    OpenUrl
  61. 61.↵
    1. Bot A. I.,
    2. Tarara T. E.,
    3. Smith D. J.,
    4. Bot S. R.,
    5. Woods C. M.,
    6. Weers J. G.
    Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharm. Res. 2000, 17 (3), 275–283.
    OpenUrlCrossRefPubMedWeb of Science
  62. 62.↵
    1. Hutchinson F. G.,
    2. Furr B. J.
    Biodegradable polymers for controlled release of peptides and proteins. Horiz. Biochem. Biophys. 1989, 9, 111–129.
    OpenUrlPubMed
  63. 63.↵
    1. Ehrhardt C.,
    2. Fiegel J.,
    3. Fuchs S.,
    4. Abu-Dahab R.,
    5. Schaefer U. F.,
    6. Hanes J.,
    7. Lehr C. M.
    Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J. Aerosol Med. 2002, 15 (2), 131–139.
    OpenUrlCrossRefPubMed
  64. 64.
    1. Evora C.,
    2. Soriano I.,
    3. Rogers R. A.,
    4. Shakesheff K. N.,
    5. Hanes J.,
    6. Langer R.
    Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J. Controlled Release 1998, 51 (2–3), 143–152.
    OpenUrlCrossRefPubMedWeb of Science
  65. 65.
    1. Morimoto K.,
    2. Katsumata H.,
    3. Yabuta T.,
    4. Iwanaga K.,
    5. Kakemi M.,
    6. Tabata Y.,
    7. Ikada Y.
    Gelatin microspheres as a pulmonary delivery system: evaluation of salmon calcitonin absorption. J. Pharm. Pharmacol. 2000, 52 (6), 611–617.
    OpenUrlPubMed
  66. 66.
    1. Dalby R.,
    2. Bryon P. R.,
    3. Peart J.,
    4. Farr S. J.
    1. Scott T.,
    2. Sullivan A.,
    3. Proos R.
    Novel Technology for Fabrication of Therapeutic Microspheres for Pulmonary Delivery. In Respiratory Drug Delivery VIII; Dalby R., Bryon P. R., Peart J., Farr S. J. Eds.; Davis Horwood International Publishing: Raleigh, NC, 2002; pp 435–437.
  67. 67.
    1. Dhiman N.,
    2. Khuller G. K.
    Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (DL-lactide-co-glycolide) microparticles as carrier vehicles. FEMS Immunol. Med. Microbiol. 1998, 21 (1), 19–28.
    OpenUrlPubMed
  68. 68.
    1. Kawashima Y.,
    2. Yamamoto H.,
    3. Takeuchi H.,
    4. Fujioka S.,
    5. Hino T.
    Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J. Controlled Release 1999, 62 (1–2), 279–287.
    OpenUrlCrossRefPubMedWeb of Science
  69. 69.
    1. Edwards D. A.,
    2. Hanes J.,
    3. Caponetti G.,
    4. Hrkach J.,
    5. Ben-Jebria A.,
    6. Eskew M. L.,
    7. Mintzes J.,
    8. Deaver D.,
    9. Lotan N.,
    10. Langer R.
    Large porous particles for pulmonary drug delivery. Science 1997, 276 (5320), 1868–1871.
    OpenUrlAbstract/FREE Full Text
  70. 70.
    1. Dalby R.,
    2. Byron P. R.,
    3. Peart J.,
    4. Farr S. J.
    1. Brown L. R.,
    2. Rashba-Step J.,
    3. Scott T.,
    4. Yuanxi Q.,
    5. Rulon P. W.,
    6. McGeehan J.,
    7. Hogeland K.,
    8. Fortier R.,
    9. Sullivan A.,
    10. Proos R.,
    11. Peters L.
    Pulmonary Delivery of Novel Insulin Microspheres. In Respiratory Drug Delivery XIII; Dalby R., Byron P. R., Peart J., Farr S. J. Eds.; Davis Horwood International Publishing: Raleigh, NC, 2002; pp 431–433.
  71. 71.
    1. Surendrakumar K.,
    2. Martyn G. P.,
    3. Hodgers E. C. M.,
    4. Jansen M.,
    5. Blair J. A.
    Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J. Controlled Release 2003, 91 (3), 385–394.
    OpenUrlCrossRefPubMed
  72. 72.
    1. Pfutzner A.,
    2. Mann A. E.,
    3. Steiner S. S.
    Technosphere/insulin—a new approach for effective delivery of human insulin via the pulmonary route. Diabetes Technol. Ther. 2002, 4 (5), 589–594.
    OpenUrlCrossRefPubMed
  73. 73.
    1. Steiner S.,
    2. Pfutzner S.,
    3. Wilson B. R.,
    4. Harzer O.,
    5. Heinemann L.,
    6. Rave K.
    Technosphere/insulin—proof of concept study with a new insulin formulation for pulmonary delivery. Exp. Clin. Endocrinol. Diabetes 2002, 110, 17–21.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.
    1. Garcia-Contreras L.,
    2. Morcol T.,
    3. Bell S. J.,
    4. Hickey A. J.
    Evaluation of novel particles as pulmonary delivery systems for insulin in rats. AAPS PharmSciTech 2003, 5 (2), 10–20.
    OpenUrl
  75. 75.
    1. Dalby R.,
    2. Byron P. R.,
    3. Peart J.,
    4. Farr S. J.
    1. Bhat M.
    Development of a Novel Spray-Drying Technique To Produce Particles for Aerosol Delivery. In Respiratory Drug Delivery XIII; Dalby R., Byron P. R., Peart J., Farr S. J. Eds.; Davis Horwood International Publishing: Raleigh, NC, 2002; pp 427–429.
  76. 76.
    1. Dalby R.,
    2. Byron P. R.,
    3. Peart J.,
    4. Farr S. J.
    1. Blair J.,
    2. Coghlan D.,
    3. Langner E.,
    4. Jansen M.,
    5. Askey-Sarvar A.
    Sustained Delivery of Insulin via the Lung Using Solidose Technology. In Respiratory Drug Delivery VIII; Dalby R., Byron P. R., Peart J., Farr S. J. Eds.; Davis Horwood International Publishing: Raleigh, NC, 2002; pp 411–414.
  77. 77.↵
    1. Cheng Y. S.,
    2. Yazzie D.,
    3. Gao J.,
    4. Muggli D.,
    5. Etter J.,
    6. Rosenthal G. J.
    Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology. J. Aerosol Med. 2003, 16 (1), 65–73.
    OpenUrlPubMed
  78. 78.↵
    1. Fiegel J.,
    2. Ehrhardt C.,
    3. Schaefer U. F.,
    4. Lehr C. M.,
    5. Hanes J.
    Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lung. Pharm. Res. 2003, 20 (5), 788–796.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Bittner B.,
    2. Kissel T.
    Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J. Microencapsul. 1999, 16 (3), 325–341.
    OpenUrlCrossRefPubMedWeb of Science
  80. 80.↵
    1. Dalby R.,
    2. Byron P. R.,
    3. Peart J.,
    4. Farr S. J.
    1. Plowman S.,
    2. Langner E.,
    3. Blair J.
    Elucidation of Insulin Release Mechanism from OED Microparticles Using ATR-FTIR. In Respiratory Drug Delivery VIII; Dalby R., Byron P. R., Peart J., Farr S. J. Eds.; Davis Horwood International Publishing: Raleigh, NC, 2002; pp 423–426.
  81. 81.↵
    1. Takeuchi H.,
    2. Yamamoto H.,
    3. Kawashima Y.
    Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev. 2001, 47 (1), 39–54.
    OpenUrlCrossRefPubMed
  82. 82.
    1. Bruck A.,
    2. Abu-Dahab R.,
    3. Borchard G.,
    4. Schafer U. F.,
    5. Lehr C. M.
    Lectin functionalized liposomes for pulmonary drug delivery: interaction with human alveolar epithelial cells. J. Drug Target. 2001, 9 (4), 241–251.
    OpenUrlPubMedWeb of Science
  83. 83.
    1. Abu-Dahab R.,
    2. Schafer U. F.,
    3. Lehr C. M.
    Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur. J Pharm. Sci. 2001, 14 (1), 37–46.
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.
    1. Yanagihara K.,
    2. Cheng P. W.
    Lectin enhancement of the lipofection efficiency in human lung carcinoma cells. Biochim. Biophys. Acta 1999, 1472 (1–2), 25–33.
    OpenUrlPubMed
  85. 85.
    1. Fajac I,
    2. Briand P.,
    3. Monsigny M.,
    4. Midoux P.
    Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum. Gene Ther. 1999, 10 (3), 395–406.
    OpenUrlCrossRefPubMed
  86. 86.
    1. Fajac I.,
    2. Thévenot G.,
    3. Bédouet L.,
    4. Danel C.,
    5. Riquet M.,
    6. Merten M.,
    7. Figarella C.,
    8. Ava-Santucci J. D.,
    9. Monsigny M.,
    10. Briand P.
    Uptake of plasmid/glycosylated polymer complexes and gene transfer efficiency in differentiated airway epithelial cells. J. Gene Med. 2003, 5 (1), 38–48.
    OpenUrlPubMed
  87. 87.
    1. Allo J. C.,
    2. Midoux P.,
    3. Merten M.,
    4. Souil E.,
    5. Lipecka J.,
    6. Figarella C.,
    7. Monsigny M.,
    8. Briand P.,
    9. Fajac I.
    Efficient gene transfer into human normal and cystic fibrosis tracheal gland serous cells with synthetic vectors. Am. J. Respir. Cell Mol. Biol. 2000, 22 (2), 166–175.
    OpenUrlPubMed
  88. 88.
    1. Fajac I.,
    2. Grosse S.,
    3. Briand P.,
    4. Monsigny M.
    Targeting of cell receptors and gene transfer efficiency: a balancing act. Gene Ther. 2002, 9 (11), 740–742.
    OpenUrlPubMed
  89. 89.
    1. Robbins J. C.,
    2. Lam M. H.,
    3. Tripp C. S.,
    4. Bugianesi R. L.,
    5. Ponpipom M. M.,
    6. Shen T. Y.
    Synthetic glycopeptide substrates for receptor-mediated endocytosis by macrophages. Proc. Natl Acad. Sci. USA 1981, 78 (12), 7294–7298.
    OpenUrlAbstract/FREE Full Text
  90. 90.
    1. Derrien D.,
    2. Midoux P.,
    3. Petit C.,
    4. Nègre E.,
    5. Mayer R.,
    6. Monsigny M.,
    7. Roche A. C.
    Muramyl dipeptide bound to poly-L-lysine substituted with mannose and gluconoyl residues as macrophage activators. Glycoconj. J. 1989, 6 (2), 241–255.
    OpenUrlCrossRefPubMed
  91. 91.
    1. Liang W. W.,
    2. Shi X.,
    3. Deshpande D.,
    4. Malanga C. J.,
    5. Rojanasakul C. J.
    Oligonucleotide targeting to alveolar macrophages by mannose receptormediated endocytosis. Biochim. Biophys. Acta 1996, 1279 (2), 227–234.
    OpenUrlPubMed
  92. 92.
    1. Briscoe P.,
    2. Caniggia I.,
    3. Graves A.,
    4. Benson B.,
    5. Huang L.,
    6. Tanswell A. K.,
    7. Freeman B. A.
    Delivery of superoxide dismutase to pulmonary epithelium via pH-sensitive liposomes. Am. J. Physiol. 1995, 268, L374–L380.
    OpenUrlPubMed
  93. 93.
    1. Ross G. F.,
    2. Morris R. E.,
    3. Ciraolo G.,
    4. Huelsman K.,
    5. Bruno K.,
    6. Whitsett J. A.,
    7. Baatz J. E.,
    8. Korfhagen T. R.
    Surfactant protein A-polylysine conjugates for delivery of DNA to airway cells in culture. Hum. Gene Ther. 1995, 6 (1), 31–40.
    OpenUrlCrossRefPubMed
  94. 94.
    1. Walther F. J.,
    2. David-Cu R.,
    3. Supnet M. C.,
    4. Longo M. L,
    5. Fan B. R.,
    6. Bruni R.
    Uptake of antioxidants in surfactant liposomes by cultured alveolar type II cells is enhanced by SP-A. Am. J. Physiol. 1993, 265 (4 Pt 1), L330–L339.
    OpenUrlPubMed
  95. 95.
    1. Frederiksen K. S.,
    2. Abrahamsen N.,
    3. Cristiano R. J.,
    4. Damstrup L.,
    5. Poulsen H. W.
    Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor. Cancer Gene Ther. 2000, 7 (2), 262–268.
    OpenUrlCrossRefPubMed
  96. 96.
    1. Cristiano R. J.,
    2. Roth J. A.
    Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor. Cancer Gene Ther. 1996, 3 (1), 4–10.
    OpenUrlPubMedWeb of Science
  97. 97.
    1. Yanagihara K.,
    2. Cheng H.,
    3. Cheng P. W.
    Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells. Cancer Gene Ther. 2000, 7 (1), 59–65.
    OpenUrlCrossRefPubMed
  98. 98.
    1. Gladysheva I. P.,
    2. Moroz N. A.,
    3. Karmakova T. A.,
    4. Nemtsova E. R.,
    5. Yakubovskaya R. I.,
    6. Larionova N. I.
    Immunoconjugates of soybean Bowman-Birk protease inhibitor as targeted antitumor polymeric agents. J. Drug Target. 2001, 9 (5), 303–316.
    OpenUrlPubMed
  99. 99.
    1. Mastrobattista E.,
    2. Storm G.,
    3. van Bloois L.,
    4. Reszka R.,
    5. Bloemen R. P. G.,
    6. Crommelin D. J. A.,
    7. Henricks P. J. A.
    Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells. Biochim. Biophys. Acta 1999, 1419 (2), 353–363.
    OpenUrlPubMed
  100. 100.
    1. Scott E. S.,
    2. Wiseman J. W.,
    3. Evans M. J.,
    4. Colledge W. H.
    Enhanced gene delivery to human airway epithelial cells using an integrin-targeting lipoplex. J. Gene Med. 2001, 3 (2), 125–134.
    OpenUrlCrossRefPubMedWeb of Science
  101. 101.
    1. Torchilin V. P.
    TAT peptide-modified liposomes for intracellular delivery of drugs and DNA. Cell Mol. Biol. Lett. 2002, 7 (2), 265–267.
    OpenUrlPubMed
  102. 102.
    1. Wu M.,
    2. Pasula R.,
    3. Smith P. A.,
    4. Martin W. J.
    Mapping alveolar binding sites in vivo using phage peptide libraries. Gene Ther. 2003, 10 (17), 1429–1436.
    OpenUrlCrossRefPubMed
  103. 103.
    1. Kreda S. M.,
    2. Pickles R. J.,
    3. Lazarowski E. R.,
    4. Boucher R. C.
    G-protein coupled receptors as targets for gene transfer vectors using natural smallmolecule ligands. Nat. Biotechnol. 2000, 18 (6), 635–640.
    OpenUrlCrossRefPubMedWeb of Science
  104. 104.
    1. Goren D.,
    2. Horowitz A. T.,
    3. Tzemach D.,
    4. Tarshish M.,
    5. Zalipsky S.,
    6. Gabizon A.
    Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 2000, 6 (5), 1949–1957.
    OpenUrlAbstract/FREE Full Text
  105. 105.
    1. Reddy. J. A.,
    2. Low P. S.
    Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15 (6), 587–627.
    OpenUrlPubMedWeb of Science
  106. 106.
    1. Deshpande D.,
    2. Toledo-Velasquez D.,
    3. Wang L. Y.,
    4. Malanga C. J.,
    5. Ma J. K.,
    6. Rojanasakul Y.
    Receptor-mediated peptide delivery in pulmonary epithelial monolayers. Pharm. Res. 1994, 11 (8), 1121–1126.
    OpenUrlCrossRefPubMedWeb of Science
  107. 107.
    1. Rudolph C.,
    2. Schillinger U.,
    3. Plank C.,
    4. Gessner A.,
    5. Nicklaus P.,
    6. Müller R.,
    7. Rosenecker J.
    Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim. Biophys. Acta 2002, 1573 (1), 75–83.
    OpenUrlPubMed
  108. 108.↵
    1. Torchilin V. P.
    1. Unger E. C.,
    2. Zutshi R.,
    3. Matsunaga T. O.,
    4. Ramaswami R.
    Lipid-Coated Submicron-Sized Particles as Drug Carriers. In Nanoparticulates as Drug Carriers; Torchilin V. P. Ed.; Imperial College Press: London, 2006; pp 248–249.
  109. 109.↵
    1. Smola M.,
    2. Vandamme T.,
    3. Sokolowski A.
    Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. International Journal of Nanomedicine 2008, 3 (1), 1–19.
    OpenUrlPubMed
  110. 110.↵
    1. Cindy H.
    Inhalation: going beyond asthma! Drug Del. Technol. 2010, 10 (3), 35–42.
    OpenUrl
  111. 111.↵
    1. Pilcer G.,
    2. Vanderbist F.,
    3. Amighi K.
    Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. Int. J. Pharm. 2009, 365 (1–2), 162–169.
    OpenUrlPubMed
  112. 112.↵
    1. Shaikh S.,
    2. Nazim S.,
    3. Shaikh A.,
    4. Khan T.
    Recent trends in applications of pulmonary drug delivery: a review. Int. J. of Pharma Res. & Development. 2011, 2 (12), 171–180.
    OpenUrl
  113. 113.↵
    1. Muttil P.,
    2. Wang C.,
    3. Hickey A.
    Inhaled drug delivery for tuberculosis therapy. Pharm. Res. 2009, 26 (11), 2401–2416.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 65 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 65, Issue 5
September/October 2011
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pulmonary Drug Delivery: Novel Pharmaceutical Technologies Breathe New Life into the Lungs
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Pulmonary Drug Delivery: Novel Pharmaceutical Technologies Breathe New Life into the Lungs
Basavaraj K. Nanjwade, Sagar A. Adichwal, Kishori R. Gaikwad, Kemy A. Parikh, F. V. Manvi
PDA Journal of Pharmaceutical Science and Technology Sep 2011, 65 (5) 513-534; DOI: 10.5731/pdajpst.2011.00704

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Pulmonary Drug Delivery: Novel Pharmaceutical Technologies Breathe New Life into the Lungs
Basavaraj K. Nanjwade, Sagar A. Adichwal, Kishori R. Gaikwad, Kemy A. Parikh, F. V. Manvi
PDA Journal of Pharmaceutical Science and Technology Sep 2011, 65 (5) 513-534; DOI: 10.5731/pdajpst.2011.00704
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Anatomy and Physiology of the Respiratory System
    • Pulmonary Drug Delivery
    • Pulmonary Drug Delivery Devices
    • Dry Powder Inhalation (DPI) Devices
    • The Pressurized Metered-Dose Inhalation (pMDI) Device
    • Nebulizers
    • Carrier-based Systems for Targeting Protein and Peptide Drugs to the Lungs
    • Anionic Liposomes for Delivery of Therapeutic Drugs to the Pulmonary Airways
    • Lipid-based Microparticles
    • Microspheres
    • Aerodynamically Small Macroparticles
    • Active Targeting
    • Solid Lipid Microparticles (SLMs)
    • Lipid-Coated Microbubbles
    • Significance of Nanotechnology by the Pulmonary Route
    • Recent Advances
    • Current Applications of Pulmonary Drug Delivery
    • Recent Use of Pulmonary Drug Delivery in Transplantation
    • Recent Use of Pulmonary Drug Delivery in Acute Lung Injury
    • Application of Pulmonary Drug Delivery as a Surfactant Aerosol
    • Pulmonary Delivery of Low Molecular Weight Heparin
    • Application of Pulmonary Drug Delivery in Cancer Chemotherapy
    • Inhaled Drug Delivery for Tuberculosis Therapy
    • Summary
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire