Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms

Sia Chong Hock, Neo Xue Rui Constance and Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology July 2012, 66 (4) 371-391; DOI: https://doi.org/10.5731/pdajpst.2012.00873
Sia Chong Hock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Neo Xue Rui Constance
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chan Lai Wah
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: phaclw@nus.edu.sg
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    ICH. ICH Harmonised Tripartite Guideline: Pharmaceutical Development Q6A. 1999.
  2. 2.↵
    ICH. ICH Harmonised Tripartite Guideline: Pharmaceutical Development Q6B. 1999.
  3. 3.↵
    1. Yu L.
    Pharmaceutical quality by design: product and process development, understanding, and control. Pharm. Res. 2008, 25 (4), 781– 791.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Yihong Q.,
    2. Yisheng C.,
    3. Geoff G. Z. Z.,
    4. Lirong L.,
    5. William R. P.
    1. Jiang W.,
    2. Yu L. X.
    Modern Pharmaceutical Quality Regulations: Question-based Review. In Developing Solid Oral Dosage Forms; Yihong Q., Yisheng C., Geoff G. Z. Z., Lirong L., William R. P. Eds.; Academic Press: San Diego, CA, 2009; pp 885– 901.
  5. 5.↵
    1. Lionberger R.,
    2. Lee S.,
    3. Lee L.,
    4. Raw A.,
    5. Yu L.
    Quality by design: concepts for ANDAs. AAPS Journal 2008, 10 (2), 268– 276.
    OpenUrlPubMed
  6. 6.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Scott B. S.,
    2. Wilcock A
    Process Analytical Technology and Validation. In Validation of Pharmaceutical Processes; 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare, Inc.: New York, 2008; pp 583– 605.
  7. 7.↵
    FDA. 2004 12 August 2010. Guidance for Industry PAT: A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf.
  8. 8.↵
    1. Hinz D. C.
    Process analytical technologies in the pharmaceutical industry: the FDA's PAT initiative. Anal. Bioanal. Chem. 2005, 384 (5), 1036– 1042.
    OpenUrl
  9. 9.↵
    1. Maes I.,
    2. Liedekerke B. V.
    The need for a broader perspective if process analytical technology implementation is to be successful in the pharmaceutical sector. Journal of Pharmaceutical Innovation 2006, 1 (1), 19– 21.
    OpenUrl
  10. 10.↵
    ICH. 2009 04 October 2010. ICH Harmonised Tripartite Guideline: Pharmaceutical Development Q8R (2). http://www.ich.org/LOB/media/MEDIA4986.pdf.
  11. 11.↵
    1. Drennen J. K.
    Quality by design: what does it really mean? Journal of Pharmaceutical Innovation 2007, 2 (3–4), 65– 66.
    OpenUrl
  12. 12.↵
    1. Staples M. A.
    The Concept of Quality-by-Design. Pharmaceutical Stability Testing to Support Global Markets; New York: Springer, 2010; Vol. XII, pp 101– 106.
    OpenUrl
  13. 13.↵
    1. Ganzer W. P.,
    2. Materna J. A.,
    3. Mitchell M. B.,
    4. Wall L. K.
    Current thoughts on critical process parameters and API synthesis. Pharm. Technol. 2005, 29 (7), 46– 66.
    OpenUrl
  14. 14.↵
    1. Woedtke T. V.,
    2. Kramer A.
    The limits of sterility assurance. GMS Krankenhaushygiene Interdisziplinär 2008, 3 (3).
  15. 15.↵
    EMEA. 2010 01 September 2010. Guideline on Real Time Release Testing (formerly Guideline on Parametric Release). (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/03/WC500075028.pdf.
  16. 16.↵
    1. Williams K. L.
    1. Haberer K.
    Terminal Sterilization and Parametric Release. In Microbial Contamination Control in Parenteral Manufacturing, Drugs and the Pharmmaceutical Sciences; Williams K. L. Ed.; Marcel Dekker, Inc.: New York, 2004; pp 419– 447.
  17. 17.↵
    PIC/S. 2007 Guidance on Parametric Release. http://www.picscheme.org//publication.php?download&file=cGktMDA1LTMtcGFyYW1ldHJpYy1yZWxlYXNlLnBkZg__. Accessed 04 October 2010.
  18. 18.↵
    1. Chirkot T. S.
    The relevance of continuous solid oral dosage processing and NIR spectroscopy in meeting the needs of QbD and PAT. Pharm. Technol. 2009, 33 (10), 112– 120.
    OpenUrl
  19. 19.↵
    1. Shrestha B.,
    2. Basnett H.,
    3. Raj P. M.,
    4. Patel S. S.,
    5. Das M.,
    6. Verma N. K.
    Process analytical technology: a quality assurance tool. Research Journal of Pharmacy and Technology 2009, 2 (2), 225– 227.
    OpenUrl
  20. 20.↵
    USP 〈1222〉 Terminally Sterilized Pharmaceutical Products: Parametric Release. In USP, United States Pharmacopeial Convention. Volume 29. US NF: Rockville, MD, 2002.
  21. 21.↵
    1. Aulton M. E.
    1. Walsh S. E.,
    2. Maillard J.-Y.
    Principles of Sterilisation. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 242– 250.
  22. 22.↵
    1. Aulton M. E.
    1. Maillard J.-Y.,
    2. Walsh S. E.
    Sterilisation in Practice. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 251– 265.
  23. 23.↵
    1. Williams K. L.
    1. Gonzales L.
    Raw Material Contamination Control. In Microbial Contamination and Control In Parenteral Manufacturing, Drugs and the Pharmaceutical Sciences; Williams K. L. Ed.; Marcel Dekker Inc.: New York, 2004; pp 449– 160.
  24. 24.↵
    1. Williams K. L.
    1. Gail L.,
    2. Stanischewski D.
    Airborne Contamination Control. In Microbial Contamination Control in Parenteral Manufacturing, Drugs and the Pharmaceutical Sciences; Williams K. L. Ed.; Marcel Dekker Inc.: New York, 2004; pp 215– 232.
  25. 25.↵
    1. Williams K. L.
    1. Emerson J.,
    2. Esswein P.,
    3. Gail L.,
    4. Pflugmacher U.
    Environmental Monitoring. In Microbial Contamination Control in Parenteral Manufacturing, Drugs and the Pharmaceutical Sciences; Williams K. L. Ed.; Marcel Dekker Inc.: New York, 2004; pp 609– 624.
  26. 26.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Hallworth M.
    Monitoring of Viable Particles. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 339– 355.
  27. 27.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Deschenes P. D.
    Viable Environmental Microbiological Monitoring. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 357– 369.
  28. 28.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Berger T. J.,
    2. Trupp K. D.
    Validation of Terminal Sterilisation. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 187– 199.
  29. 29.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Case L. B.,
    2. Heffernan G. D.
    Dry Heat Sterilisation and Depyrogenation Validation and Monitoring. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 223– 240.
  30. 30.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Gillis J. R.,
    2. Mosley G.
    Validation of Ethylene Oxide Sterilization Processes. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 241– 262.
  31. 31.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Jacobs G. P.
    Validation of the Radiation Sterilisation of Pharmaceuticals. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 269– 275.
  32. 32.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. William G.,
    2. Lindboe J.
    Validation of Container Preparation Processes. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 371– 379.
  33. 33.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. DeSantis P.
    Steam Sterilization in Autoclaves. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 175– 186.
  34. 34.↵
    1. Agalloco J. P.,
    2. Carleton F. J.
    1. Munson T. E.
    Regulatory Aspects of Validation. In Validation of Pharmaceutical Processes, 3rd ed.; Agalloco J. P., Carleton F. J. Eds.; Informa Healthcare: New York, 2008; pp 709– 714.
  35. 35.↵
    FDA. 2004. Pharmaceutical cGMPs for the 21st century: A risk based approach. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/Manufacturing/QuestionsandAnswersonCurrentGoodManufacturingPracticescGMPforDrugs/UCM176374.pdf. 12 August 2010.
  36. 36.↵
    1. Weinberg S.
    Cost-contained Regulatory Compliance: For the Pharmaceutical, Biologics and Medical Device Industries, 1st ed.; Weinberg S. Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2011; pp 44.
  37. 37.↵
    1. John L.
    1. Skibsted E.,
    2. Engelsen S. B.
    Spectroscopy for Process Analytical Technology (PAT). In Encyclopedia of Spectroscopy and Spectrometry; John L. Ed.; Academic Press: Oxford, 2010; pp 2651– 2661.
  38. 38.↵
    1. Rios M.
    Continuous processing—finally. Pharm. Technol. 2007, 31 (4), 64– 67.
    OpenUrl
  39. 39.↵
    1. Pellek A.,
    2. van Arnuma P.
    Continuous processing: moving with or against the manufacturing flow? Pharm. Technol. 2008, 32 (9), 52– 58.
    OpenUrl
  40. 40.↵
    1. Bakeev K. A.
    1. Simpson M. B.
    Near-Infrared Spectroscopy for Process Analytical Chemistry: Theory, Technology and Implementation. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; Bakeev K. A. Ed.; Blackwell Publishing Ltd.: Oxford, 2005; pp 39– 90.
  41. 41.↵
    1. Yihong Q.,
    2. Yisheng C.,
    3. Geoff G. Z. Z.,
    4. Lirong L.,
    5. William R. P.
    1. Sever N. E.,
    2. Warman M.,
    3. Mackey S.,
    4. Dziki W.,
    5. Jiang M.
    Process Analytical Technology in Solid Dosage Development and Manufacturing. In Developing Solid Oral Dosage Forms; Yihong Q., Yisheng C., Geoff G. Z. Z., Lirong L., William R. P. Eds.; Academic Press: San Diego, 2009; pp 827– 841.
  42. 42.↵
    1. Higgins J. P.,
    2. Arrivo S. M.,
    3. Thurau G.,
    4. Green R. L.,
    5. Bowen W.,
    6. Lange A.,
    7. Templeton A. C.,
    8. Thomas D. L.,
    9. Reed R. A.
    Spectroscopic approach for on-line monitoring of particle size during the processing of pharmaceutical nanoparticles. Anal Chem. 2003, 75 (8), 1777– 85.
    OpenUrlPubMed
  43. 43.↵
    1. Sekulic S. S.,
    2. Ward H. W.,
    3. Brannegan D. R.,
    4. Stanley E. D.,
    5. Evans C. L.,
    6. Sciavolino S. T.,
    7. Hailey P. A.,
    8. Aldridge P. K.
    On-line monitoring of powder blend homogeneity by near-infrared spectroscopy. Anal. Chem. 1996, 68 (3), 509– 513.
    OpenUrlPubMed
  44. 44.↵
    1. El-Hagrasy A. S.,
    2. Morris H. R.,
    3. D'Amico F.,
    4. Lodder R. A.,
    5. Drennen J. K 3rd..
    Near-infrared spectroscopy and imaging for the monitoring of powder blend homogeneity. J. Pharm Sci. 2001, 90 (9), 1298– 1307.
    OpenUrlPubMed
  45. 45.↵
    1. Blanco M.,
    2. Gozález Bañó R.,
    3. Bertran E.
    Monitoring powder blending in pharmaceutical processes by use of near infrared spectroscopy. Talanta 2002, 56 (1), 203– 212.
    OpenUrlPubMed
  46. 46.↵
    1. Berntsson O.,
    2. Danielsson L. G.,
    3. Lagerholm B.,
    4. Folestad S.
    Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy. Powder Technol. 2002, 123 (2–3), 185– 193.
    OpenUrl
  47. 47.↵
    1. El-Hagrasy A. S.,
    2. D'Amico F.,
    3. Drennen J. K 3rd..
    A process analytical technology approach to near-infrared process control of pharmaceutical powder blending. Part I: D-optimal design for characterization of powder mixing and preliminary spectral data evaluation. J. Pharm. Sci. 2006, 95 (2), 392– 406.
    OpenUrlPubMed
  48. 48.↵
    1. El-Hagrasy A. S.,
    2. Delgado-Lopez M.,
    3. Drennen J. K.
    A process analytical technology approach to near-infrared process control of pharmaceutical powder blending: Part II: Qualitative near-infrared models for prediction of blend homogeneity. J. Pharm. Sci. 2006, 95 (2), 407– 421.
    OpenUrlPubMed
  49. 49.↵
    1. El-Hagrasy A. S.,
    2. Drennen J. K.
    A process analytical technology approach to near-infrared process control of pharmaceutical powder blending. Part III: Quantitative near-infrared calibration for prediction of blend homogeneity and characterization of powder mixing kinetics. J. Pharm. Sci. 2006, 95 (2), 422– 434.
    OpenUrlPubMed
  50. 50.↵
    1. Shi Z.,
    2. Cogdill R. P.,
    3. Short S. M.,
    4. Anderson C. A.
    Process characterization of powder blending by near-infrared spectroscopy: blend end-points and beyond. J. Pharm. Biomed. Anal. 2008, 47 (4–5), 738– 745.
    OpenUrlPubMed
  51. 51.↵
    1. Liew C. V.,
    2. Karande A. D.,
    3. Heng P. W. S.
    In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy. Int. J. Pharm. 2009, 386 (1–2), 138– 148.
    OpenUrlPubMed
  52. 52.↵
    1. Sulub Y.,
    2. Wabuyele B.,
    3. Gargiulo P.,
    4. Pazdan J.,
    5. Cheney J.,
    6. Berry J.,
    7. Gupta A.,
    8. Shah R.,
    9. Wu H.,
    10. Khan M.
    Real-time on-line blend uniformity monitoring using near-infrared reflectance spectrometry: a noninvasive off-line calibration approach. J. Pharm. Biomed. Anal. 2009, 49 (1), 48– 54.
    OpenUrlPubMed
  53. 53.↵
    1. Vanarase A. U.,
    2. Alcalà M.,
    3. Jerez Rozo J. I.,
    4. Muzzio F. J.,
    5. Romañach R. J.
    Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy. Chem. Eng. Sci. 2010, 65 (21), 5728– 5733.
    OpenUrl
  54. 54.↵
    1. Koller D. M.,
    2. Posch A.,
    3. Hörl G.,
    4. Voura C.,
    5. Radl S.,
    6. Urbanetz N.,
    7. Fraser S. D.,
    8. Tritthart W.,
    9. Reiter F.,
    10. Schlingmann M.,
    11. Khinast J. G.
    Continuous quantitative monitoring of powder mixing dynamics by near-infrared spectroscopy. Powder Technology 2011, 205 (1–3), 87– 96.
    OpenUrl
  55. 55.↵
    1. Gowen A. A.,
    2. O'Donnell C. P.,
    3. Cullen P. J.,
    4. Bell S. E. J.
    Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur. J. Pharm. Biopharm. 2008, 69 (1), 10– 22.
    OpenUrlPubMed
  56. 56.↵
    1. Gendrin C.,
    2. Roggo Y.,
    3. Collet C.
    Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J. Pharm. Biomed. Anal. 2008, 48 (3), 533– 553.
    OpenUrlPubMed
  57. 57.↵
    1. Moes J. J.,
    2. Ruijken M. M.,
    3. Gout E.,
    4. Frijlink H. W.,
    5. Ugwoke M. I.
    Application of process analytical technology in tablet process development using NIR spectroscopy: blend uniformity, content uniformity and coating thickness measurements. Int. J. Pharm. 2008, 357 (1–2), 108– 118.
    OpenUrlPubMed
  58. 58.↵
    1. Gupta A.,
    2. Peck G. E.,
    3. Miller R. W.,
    4. Morris K. R.
    Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy. J. Pharm. Sci. 2004, 93 (4), 1047– 1053.
    OpenUrlPubMed
  59. 59.↵
    1. Yu L. X.,
    2. Lionberger R. A.,
    3. Raw A. S.,
    4. D'Costa R.,
    5. Wu H.,
    6. Hussain A. S.
    Applications of process analytical technology to crystallization processes. Adv. Drug Del. Rev. 2004, 56 (3), 349– 369.
    OpenUrlPubMed
  60. 60.↵
    1. Frake P.,
    2. Greenhalgh D.,
    3. Grierson S. M.,
    4. Hempenstall J. M.,
    5. Rudd D. R.
    Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. Int. J. Pharm. 1997, 151 (1), 75– 80.
    OpenUrl
  61. 61.↵
    1. Rantanen J.,
    2. Lehtola S.,
    3. Rämet P.,
    4. Mannermaa J.-P.,
    5. Yliruusi J.
    On-line monitoring of moisture content in an instrumented fluidized bed granulator with a multi-channel NIR moisture sensor. Powder Technology 1998, 99 (2), 163– 170.
    OpenUrl
  62. 62.↵
    1. Findlay W. P.,
    2. Peck G. R.,
    3. Morris K. R.
    Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J. Pharm. Sci. 2005, 94 (3), 604– 612.
    OpenUrlPubMed
  63. 63.↵
    1. Tok A.,
    2. Goh X.,
    3. Ng W.,
    4. Tan R.
    Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS PharmSciTech 2008, 9 (4), 1083– 1091.
    OpenUrlPubMed
  64. 64.↵
    1. Jørgensen A. C.,
    2. Luukkonen P.,
    3. Rantanen J.,
    4. Schæfer T.,
    5. Juppo A. M.,
    6. Yliruusi J.
    Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process. J. Pharm. Sci. 2004, 93 (9), 2232– 2243.
    OpenUrlPubMed
  65. 65.↵
    1. Räsänen E.,
    2. Rantanen J.,
    3. Mannermaa J.-P.,
    4. Yliruusi J.,
    5. Vuorela H.
    Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement. J. Pharm. Sci. 2003, 92 (10), 2074– 2081.
    OpenUrlPubMed
  66. 66.↵
    1. Morisseau K. M.,
    2. Rhodes C. T.
    Near-infrared spectroscopy as a nondestructive alternative to conventional tablet hardness testing. Pharm. Res. 1997, 14 (1), 108– 111.
    OpenUrlPubMed
  67. 67.↵
    1. Kirsch J. D.,
    2. Drennen J. K.
    Nondestructive tablet hardness testing by near-infrared spectroscopy: a new and robust spectral best-fit algorithm. J. Pharm. Biomed. Anal. 1999, 19 (3–4), 351– 362.
    OpenUrlPubMed
  68. 68.↵
    1. Blanco M.,
    2. Alcalá M
    Content uniformity and tablet hardness testing of intact pharmaceutical tablets by near infrared spectroscopy: a contribution to process analytical technologies. Analytica Chimica Acta 2006, 557 (1–2), 353– 359.
    OpenUrl
  69. 69.↵
    1. Otsuka M.,
    2. Yamane I.
    Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics. J. Pharm. Sci. 2006, 95 (7), 1425– 1433.
    OpenUrlPubMed
  70. 70.↵
    1. Mattes R.,
    2. Root D.,
    3. Anand O.,
    4. Rajan M. G.,
    5. Trivedi N. R.,
    6. Wen Q.,
    7. Yingxu P.,
    8. Yichun S.
    Near-infrared assay and content uniformity of tablets. Pharm. Technol. 2007, 31 (4), 170– 182.
    OpenUrl
  71. 71.↵
    1. Otsuka M.,
    2. Yamane I.
    Prediction of tablet properties based on near infrared spectra of raw mixed powders by chemometrics: scale-up factor of blending and tableting processes. J. Pharm. Sci. 2009, 98 (11), 4296– 4305.
    OpenUrlPubMed
  72. 72.↵
    1. Karande A. D.,
    2. Heng P. W. S.,
    3. Liew C. V.
    In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy: real time monitoring of tabletting process. Int. J. Pharm. 2010, 396 (1–2), 63– 74.
    OpenUrlPubMed
  73. 73.↵
    1. Buchanan B. R.,
    2. Baxter M. A.,
    3. Chen T. S.,
    4. Qin X.-Z.,
    5. Robinson P. A.
    Use of near-infrared spectroscopy to evaluate an active in a film-coated tablet. Pharm. Res. 1996, 13 (4), 616– 621.
    OpenUrlPubMed
  74. 74.↵
    1. Andersson M.,
    2. Folestad S.,
    3. Gottfries J.,
    4. Johansson M. O.,
    5. Josefson M.,
    6. Wahlund K.-G.
    Quantitative analysis of film coating in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal. Chem. 2000, 72 (9), 2099– 2108.
    OpenUrlPubMed
  75. 75.↵
    1. Pérez-Ramos J.,
    2. Findlay W.,
    3. Peck G.,
    4. Morris K.
    Quantitative analysis of film coating in a pan coater based on in-line sensor measurements. AAPS PharmSciTech 2005, 6 (1), E127– E136.
    OpenUrlPubMed
  76. 76.↵
    1. Römer M.,
    2. Heinämäki J.,
    3. Strachan C.,
    4. Sandler N.,
    5. Yliruusi J.
    Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy. AAPS PharmSciTech 2008, 9 (4), 1047– 1053.
    OpenUrlPubMed
  77. 77.↵
    1. Cahyadi C.,
    2. Karande A. D.,
    3. Chan L. W.,
    4. Heng P. W. S.
    Comparative study of non-destructive methods to quantify thickness of tablet coatings. Int. J. Pharm. 2010, 398 (1–2), 39– 49.
    OpenUrlPubMed
  78. 78.↵
    1. Lee M.-J.,
    2. Seo D.-Y.,
    3. Lee H.-E.,
    4. Wang I.-C.,
    5. Kim W.-S.,
    6. Jeong M.-Y.,
    7. Choi G. J.
    In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. Int. J. Pharm. 2010, 403 (1–2), 66– 72.
    OpenUrlPubMed
  79. 79.↵
    1. Vankeirsbilck T.,
    2. Vercauteren A.,
    3. Baeyens W.,
    4. Van der Weken G.,
    5. Verpoort F.,
    6. Vergote G.,
    7. Remon J. P.
    Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends in Analytical Chemistry 2002, 21 (12), 869– 877.
    OpenUrl
  80. 80.↵
    1. Bakeev K. A.
    1. Jestel N. L.
    Process Raman Spectroscopy. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; Bakeev K. A. Ed.; Blackwell Publishing Ltd.: Oxford, 2005; pp 133– 169.
  81. 81.↵
    1. Vergote G. J.,
    2. De Beer T. R. M.,
    3. Vervaet C.,
    4. Remon J. P.,
    5. Baeyens W. R. G.,
    6. Diericx N.,
    7. Verpoort F.
    In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy. Eur. J. Pharm. Sci. 2004, 21 (4), 479– 485.
    OpenUrlPubMed
  82. 82.↵
    1. Hausman D. S.,
    2. Cambron R. T.,
    3. Sakr A.
    Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity. Int. J. Pharm. 2005, 298 (1), 80– 90.
    OpenUrlPubMed
  83. 83.↵
    1. Caillet A.,
    2. Puel F.,
    3. Fevotte G.
    In-line monitoring of partial and overall solid concentration during solvent-mediated phase transition using Raman spectroscopy. Int. J. Pharm. 2006, 307 (2), 201– 208.
    OpenUrlPubMed
  84. 84.↵
    1. Wikström H.,
    2. Marsac P. J.,
    3. Taylor L. S.
    In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J. Pharm. Sci. 2005, 94 (1), 209– 219.
    OpenUrlPubMed
  85. 85.↵
    1. Mantanus J.,
    2. Ziémons E.,
    3. Lebrun P.,
    4. Rozet E.,
    5. Klinkenberg R.,
    6. Streel B.,
    7. Evrard B.,
    8. Hubert P.
    Moisture content determination of pharmaceutical pellets by near infrared spectroscopy: Method development and validation. Analytica Chimica Acta 2009, 642 (1–2), 186– 192.
    OpenUrlPubMed
  86. 86.↵
    1. Sandler N.,
    2. Rantanen J.,
    3. Heinämäki J.,
    4. Römer M.,
    5. Marola M.,
    6. Yliruusi J.
    Pellet manufacturing by extrusion-spheronization using process analytical technology. AAPS PharmSciTech 2005, 6 (2), E174– E183.
    OpenUrlPubMed
  87. 87.↵
    1. De Beer T. R. M.,
    2. Allesø M.,
    3. Goethals F.,
    4. Coppens A.,
    5. Vander Heyden Y.,
    6. Lopez De Diego H.,
    7. Rantanen J.,
    8. Verpoort F.,
    9. Vervaet C.,
    10. Remon J. P.,
    11. Baeyens W. R.
    Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring. Anal. Chem. 2007, 79 (21), 7992– 8003.
    OpenUrlPubMed
  88. 88.↵
    1. Johansson J.,
    2. Pettersson S.,
    3. Folestad S.
    Characterization of different laser irradiation methods for quantitative Raman tablet assessment. J. Pharm. Biomed. Anal. 2005, 39 (3–4), 510– 516.
    OpenUrlPubMed
  89. 89.↵
    1. Romero-Torres S.,
    2. Pérez-Ramos J. D.,
    3. Morris K. R.,
    4. Grant E. R.
    Raman spectroscopic measurement of tablet-to-tablet coating variability. J. Pharm. Biomed. Anal. 2005, 38 (2), 270– 274.
    OpenUrlPubMed
  90. 90.↵
    1. Romero-Torres S.,
    2. Pérez-Ramos J. D.,
    3. Morris K. R.,
    4. Grant E. R.
    Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference. J. Pharm. Biomed. Anal. 2006, 41 (3), 811– 819.
    OpenUrlPubMed
  91. 91.↵
    1. Kauffman J. F.,
    2. Dellibovi M.,
    3. Cunningham C. R.
    Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness. J. Pharm. Biomed. Anal. 2007, 43 (1), 39– 48.
    OpenUrlPubMed
  92. 92.↵
    1. Pöllänen K.,
    2. Häkkinen A.,
    3. Reinikainen S.-P.,
    4. Rantanen J.,
    5. Karjalainen M.,
    6. Louhi-Kultanen M.,
    7. Nyström L.
    IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product. J. Pharm. Biomed. Anal. 2005, 38 (2), 275– 284.
    OpenUrlPubMed
  93. 93.↵
    1. Tewari J.,
    2. Dixit V.,
    3. Malik K.
    On-line monitoring of residual solvent during the pharmaceutical drying process using non-contact infrared sensor: a process analytical technology (PAT) approach. Sensors and Actuators B: Chemical 2010, 144 (1), 104– 111.
    OpenUrl
  94. 94.↵
    1. Ho L.,
    2. Müller R.,
    3. Römer M.,
    4. Gordon K. C.,
    5. Heinämäki J.,
    6. Kleinebudde P.,
    7. Pepper M.,
    8. Rades T.,
    9. Shen Y. C.,
    10. Strachan C. J.,
    11. Taday P. F,
    12. Zeitler J. A.
    Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J. Controlled Release 2007, 119 (3), 253– 261.
    OpenUrlPubMed
  95. 95.↵
    1. Ho L.,
    2. Müller R.,
    3. Gordon K. C.,
    4. Kleinebudde P.,
    5. Pepper M.,
    6. Rades T.,
    7. Shen Y.,
    8. Taday P. F.,
    9. Zeitler J. A.
    Applications of terahertz pulsed imaging to sustained-release tablet film coating quality assessment and dissolution performance. J. Controlled Release 2008, 127 (1), 79– 87.
    OpenUrlPubMed
  96. 96.↵
    1. Ho L.,
    2. Müller R.,
    3. Gordon K. C.,
    4. Kleinebudde P.,
    5. Pepper M.,
    6. Rades T.,
    7. Shen Y.,
    8. Taday P. F.,
    9. Zeitler J. A.
    Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. Eur. J. Pharm. Biopharm. 2009, 71 (1), 117– 123.
    OpenUrlPubMed
  97. 97.↵
    1. Wu H.,
    2. Heilweil E. J.,
    3. Hussain A. S.,
    4. Khan M. A.
    Process analytical technology (PAT): Effects of instrumental and compositional variables on terahertz spectral data quality to characterize pharmaceutical materials and tablets. Int. J. Pharm. 2007, 343 (1–2), 148– 158.
    OpenUrlPubMed
  98. 98.↵
    1. Esbensen K. H.,
    2. Halstensen M.,
    3. Tønnesen Lied T.,
    4. Arild S.,
    5. Svalestuen J.,
    6. de Silva S.,
    7. Hope B.
    Acoustic chemometrics—from noise to information. Chemometrics and Intelligent Laboratory Systems 1998, 44 (1–2), 61– 76.
    OpenUrl
  99. 99.↵
    1. Dukhin A. S.,
    2. Goetz P. J.
    Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions. Adv. Colloid Interface Sci. 2001, 92 (1–3), 73– 132.
    OpenUrlPubMed
  100. 100.↵
    1. Dukhin A. S.,
    2. Goetz P. J.
    New developments in acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions. Colloids Surf., A 2001, 192 (1–3), 267– 306.
    OpenUrl
  101. 101.↵
    1. Halstensen M.,
    2. de Bakker P.,
    3. Esbensen K. H.
    Acoustic chemometric monitoring of an industrial granulation production process—a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems 2006, 84 (1–2), 88– 97.
    OpenUrl
  102. 102.↵
    1. Whitaker M.,
    2. Baker G. R.,
    3. Westrup J.,
    4. Goulding P. A.,
    5. Rudd D. R.,
    6. Belchamber R. M.,
    7. Collins M. P.
    Application of acoustic emission to the monitoring and end point determination of a high shear granulation process. Int. J. Pharm. 2000, 205 (1–2), 79– 91.
    OpenUrlPubMed
  103. 103.↵
    1. Briens L.,
    2. Daniher D.,
    3. Tallevi A.
    Monitoring high-shear granulation using sound and vibration measurements. Int. J. Pharm. 2007, 331 (1), 54– 60.
    OpenUrlPubMed
  104. 104.↵
    1. Papp M.,
    2. Pujara C.,
    3. Pinal R.
    Monitoring of high-shear granulation using acoustic emission: predicting granule properties. Journal of Pharmaceutical Innovation 2008, 3 (2), 113– 122.
    OpenUrl
  105. 105.↵
    1. Daniher D.,
    2. Briens L.,
    3. Tallevi A.
    End-point detection in high-shear granulation using sound and vibration signal analysis. Powder Technology 2008, 181 (2), 130– 136.
    OpenUrl
  106. 106.↵
    1. Briens L.,
    2. Bojarra M.
    Monitoring fluidized bed drying of pharmaceutical granules. AAPS PharmSciTech 2010, 11 (4), 1612– 1618.
    OpenUrlPubMed
  107. 107.↵
    1. Naelapää K.,
    2. Veski P.,
    3. Pedersen J. G.,
    4. Anov D.,
    5. Jørgensen P.,
    6. Kristensen H. G.,
    7. Bertelsen P.
    Acoustic monitoring of a fluidized bed coating process. Int. J. Pharm. 2007, 332 (1–2), 90– 97.
    OpenUrlPubMed
  108. 108.↵
    1. Varghese I.,
    2. Cetinkaya C.
    Noncontact photo-acoustic defect detection in drug tablets. J. Pharm. Sci. 2007, 96 (8), 2125– 2133.
    OpenUrlPubMed
  109. 109.↵
    1. Akseli I.,
    2. Cetinkaya C.
    Drug tablet thickness estimations using air-coupled acoustics. Int. J. Pharm. 2008, 351 (1–2), 165– 173.
    OpenUrlPubMed
  110. 110.↵
    1. Akseli I.,
    2. Cetinkaya C.
    Air-coupled non-contact mechanical property determination of drug tablets. Int. J. Pharm. 2008, 359 (1–2), 25– 34.
    OpenUrlPubMed
  111. 111.↵
    1. Akseli I.,
    2. Becker D. C.,
    3. Cetinkaya C.
    Ultrasonic determination of Young's moduli of the coat and core materials of a drug tablet. Int. J. Pharm. 2009, 370 (1–2), 17– 25.
    OpenUrlPubMed
  112. 112.↵
    1. Leskinen J. T. T.,
    2. Simonaho S.-P.,
    3. Hakulinen M.,
    4. Ketolainen J.
    In-line ultrasound measurement system for detecting tablet integrity. Int. J. Pharm. 2010, 400 (1–2), 104– 113.
    OpenUrlPubMed
  113. 113.↵
    1. Nalluri V. R.,
    2. Schirg P.,
    3. Gao X.,
    4. Virdis A.,
    5. Imanidis G.,
    6. Kuentz M.
    Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process. Int. J. Pharm. 2010, 391 (1–2), 107– 114.
    OpenUrlPubMed
  114. 114.↵
    1. Nalluri V.,
    2. Kuentz M.
    Advancing pharmaceutical dry milling by process analytics and robustness testing. Journal of Pharmaceutical Innovation 2010, 5 (3), 100– 108.
    OpenUrl
  115. 115.↵
    1. Mozina M.,
    2. Tomazevic D.,
    3. Leben S.,
    4. Pernus F.,
    5. Likar B.
    Digital imaging as a process analytical technology tool for fluid-bed pellet coating process. Eur. J. Pharm. Sci. 2010, 41 (1), 156– 162.
    OpenUrlPubMed
  116. 116.↵
    1. Watano S.
    Direct control of wet granulation processes by image processing system. Powder Technology 2001, 117 (1–2), 163– 172.
    OpenUrl
  117. 117.↵
    1. Närvänen T.,
    2. Seppälä K.,
    3. Antikainen O.,
    4. Yliruusi J.
    A new rapid on-line imaging method to determine particle size distribution of granules. AAPS PharmSciTech 2008, 9 (1), 282– 287.
    OpenUrlPubMed
  118. 118.↵
    1. Laitinen N.,
    2. Antikainen O.,
    3. Rantanen J.,
    4. Yliruusi J.
    New perspectives for visual characterization of pharmaceutical solids. J. Pharm. Sci. 2004, 93 (1), 165– 176.
    OpenUrlCrossRefPubMedWeb of Science
  119. 119.↵
    1. Dieter P.,
    2. Stefan D.,
    3. Günter E.,
    4. Michael K.
    In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT). Advanced Powder Technology 2010, in press.
  120. 120.↵
    1. Nir I.,
    2. Johnson B. D.,
    3. Johansson J.,
    4. Schatz C.
    Application of fibre optic dissolution testing for actual products. Pharm. Technol. Eur. 2002, 14 (3), 20.
    OpenUrl
  121. 121.↵
    1. Inman G. W.,
    2. Wethington E.,
    3. Baughman K.,
    4. Horton M.
    System optimization for in situ fiber-optic dissolution testing. Pharm. Technol. 2001, 25 (10), 92– 100.
    OpenUrl
  122. 122.↵
    1. Ma Z.,
    2. Merkus HG.,
    3. van der Veen H. G.,
    4. Wong M.,
    5. Scarlett B.
    On-line measurement of particle size and shape using laser diffraction. Particle & Particle Systems Characterization 2001, 18 (5–6), 243– 247.
    OpenUrl
  123. 123.↵
    1. Chan L.,
    2. Tan L.,
    3. Heng P.
    Process analytical technology: application to particle sizing in spray drying. AAPS PharmSciTech 2008, 9 (1), 259– 266.
    OpenUrlPubMed
  124. 124.↵
    1. Matthews L.,
    2. Chandler C.,
    3. Dipali S.,
    4. Adusumilli P.,
    5. Lech S.,
    6. Daskalakis S.,
    7. Mathis N.
    Monitoring blend uniformity with effusivity. Pharm. Technol. 2002, 26 (4), 80.
    OpenUrl
  125. 125.↵
    1. Léonard G.,
    2. Bertrand F.,
    3. Chaouki J.,
    4. Gosselin P. M.
    An experimental investigation of effusivity as an indicator of powder blend uniformity. Powder Technology 2008, 181 (2), 149– 159.
    OpenUrl
  126. 126.↵
    1. Ghorab M.,
    2. Chatlapalli R.,
    3. Hasan S.,
    4. Nagi A.
    Application of thermal effusivity as a process analytical technology tool for monitoring and control of the roller compaction process. AAPS PharmSciTech 2007, 8 (1), E155– E161.
    OpenUrl
  127. 127.↵
    1. Fariss G.,
    2. Keintz R.,
    3. Okoye P.
    Thermal effusivity and power consumption as PAT tools for monitoring granulation end point. Pharm. Technol. 2006, 30 (6), 60– 72.
    OpenUrl
  128. 128.↵
    1. Wold S.
    Chemometrics; what do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems 1995, 30 (1), 109– 115.
    OpenUrl
  129. 129.↵
    1. Workman J. J.
    Review of Chemometrics Applied to Spectroscopy: Quantitative and Qualitative Analysis. The Handbook of Organic Compounds; Academic Press: Burlington, 2001; pp 301– 326.
  130. 130.↵
    1. Joe Qin S.
    Statistical process monitoring: basics and beyond. Journal of Chemometrics 2003, 17 (8–9), 480– 502.
    OpenUrlCrossRefWeb of Science
  131. 131.↵
    1. Lopes J. A.,
    2. Costa P. F.,
    3. Alves T. P.,
    4. Menezes J. C.
    Chemometrics in bioprocess engineering: process analytical technology (PAT) applications. Chemometrics and Intelligent Laboratory Systems 2004, 74 (2), 269– 275.
    OpenUrl
  132. 132.↵
    1. Bakeev K. A.
    1. Miller C. E.
    Chemometrics in Process Analytical Chemistry. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; Bakeev K. A. Ed.; Blackwell Publishing Ltd.: Oxford, 2005; pp 226– 328.
  133. 133.↵
    1. Brown S. D.
    Chemometrics. John Wiley & Sons, Ltd.: Hoboken, NJ, 2006.
  134. 134.↵
    1. Huang J.,
    2. Kaul G.,
    3. Cai C.,
    4. Chatlapalli R.,
    5. Hernandez-Abad P.,
    6. Ghosh K.,
    7. Nagi A.
    Quality by design case study: an integrated multivariate approach to drug product and process development. Int. J. Pharm. 2009, 382 (1–2), 23– 32.
    OpenUrlPubMed
  135. 135.↵
    1. Brown S. D.,
    2. Tauler R.,
    3. Walczak B.
    1. Menezes J. C.,
    2. Ferreira A. P.,
    3. Rodrigues L. O.,
    4. Brás L. P.,
    5. Alves T. P.
    Chemometrics Role within the PAT Context: Examples from Primary Pharmaceutical Manufacturing. In Comprehensive Chemometrics; Brown S. D., Tauler R., Walczak B. Eds.; Elsevier: Oxford, 2009; pp 313– 355.
  136. 136.↵
    1. Aulton M. E.
    1. Twitchell A. M.
    Mixing. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 152– 167.
  137. 137.↵
    1. Aulton M. E.
    1. Summers M. P.,
    2. Aulton M. E.
    Granulation. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines 3rd ed. Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 410– 424.
  138. 138.↵
    1. Davis T. D.,
    2. Morris K. R.,
    3. Huang H.,
    4. Peck G. E.,
    5. Stowell J. G.,
    6. Eisenhauer B. J.,
    7. Hilden J. L.,
    8. Gibson D.,
    9. Byrn S. R.
    In situ monitoring of wet granulation using online X-Ray powder diffraction. Pharm. Res. 2003, 20 (11), 1851– 1857.
    OpenUrlPubMed
  139. 139.↵
    1. Talu I.,
    2. Tardos G. I.,
    3. Ruud van Ommen J.
    Use of stress fluctuations to monitor wet granulation of powders. Powder Technology 2001, 117 (1–2), 149– 162.
    OpenUrl
  140. 140.↵
    1. Aulton M. E.
    1. Staniforth J. N.,
    2. Aulton M. E.
    Paricle Size Reduction. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 137– 144.
  141. 141.↵
    1. Aulton M. E.
    1. Staniforth J. N.,
    2. Aulton M. E.
    Particle Size Analysis. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 121– 136.
  142. 142.↵
    1. Aulton M. E.
    1. Aulton M. E.
    Drying. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 425– 440.
  143. 143.↵
    1. Aulton M. E.
    1. Alderborn G.
    Tablets and Compaction. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 441– 482.
  144. 144.↵
    1. Virtanen S.,
    2. Antikainen O.,
    3. Yliruusi J.
    Determination of the crushing strength of intact tablets using Raman spectroscopy. Int. J. Pharm. 2008, 360 (1–2), 40– 46.
    OpenUrlPubMed
  145. 145.↵
    1. Aulton M. E.
    1. Porter S. C.
    Coating of tablets and multiparticles. In Aulton's Pharmaceutics: The Design and Manufacture of Medicines, 3rd ed.; Aulton M. E. Ed.; Elsevier Limited: Philadelphia, PA, 2007; pp 500– 514.
  146. 146.↵
    FDA. 2003 Comparability Protocols: Chemistry, Manufacturing, and Controls Information. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/ucm052510.pdf.
  147. 147.↵
    1. McCormick D.
    PAT survey reflects optimism, uncertainty. Pharm. Technol. 2005, 29 (1), 24.
    OpenUrl
  148. 148.↵
    1. Drakulich A.
    Critical challenges to implementing QbD: A Q&A with FDA. Pharm. Technol. 2009, 33 (10), 90– 94.
    OpenUrl
  149. 149.↵
    1. Valporsson H.
    PAT implementation in pharmaceutical manufacturing and its economical impact. PhD Thesis 2006, University of Basel, Switzerland. http://edoc.unibas.ch/diss/DissB_8178.
  150. 150.↵
    1. Cogdill R.,
    2. Knight T.,
    3. Anderson C.,
    4. Drennen J.
    The financial returns on investments in process analytical technology and lean manufacturing: benchmarks and case study. Journal of Pharmaceutical Innovation 2007, 2 (1), 38– 50.
    OpenUrl
  151. 151.↵
    1. EMA.
    2011 22 March 2012. “EMA-FDA Pilot Program for Parallel Assessment of Quality by Design Applications” (EMA/172347/2011) http://www.ema.europa.eu/docs/en_GB/document_library/other/2011/03/wc500103621.pdf.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 66 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 66, Issue 4
July/August 2012
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms
Sia Chong Hock, Neo Xue Rui Constance, Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology Jul 2012, 66 (4) 371-391; DOI: 10.5731/pdajpst.2012.00873

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms
Sia Chong Hock, Neo Xue Rui Constance, Chan Lai Wah
PDA Journal of Pharmaceutical Science and Technology Jul 2012, 66 (4) 371-391; DOI: 10.5731/pdajpst.2012.00873
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • 1. Overview of Quality
    • 2. Principles of Parametric Release
    • 3. Overview of Process Analytical Technology (PAT)
    • 4. Application of PAT Tools in Pharmaceutical Unit Operations and QbD
    • 5. Current Regulations Governing the Use of PAT in the Pharmaceutical Industry
    • 6. Challenges Faced by Industry in Implementing PAT and Strategies Proposed to Address Them
    • 7. Conclusion
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire