Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring

Oliver Gordon, Manfred Berchtold, Alexandra Staerk and David Roesti
PDA Journal of Pharmaceutical Science and Technology September 2014, 68 (5) 394-406; DOI: https://doi.org/10.5731/pdajpst.2014.00994
Oliver Gordon
Microbiological Quality Control Unit, Novartis Pharma Stein AG, Stein, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: oliver.gordon@novartis.com
Manfred Berchtold
Microbiological Quality Control Unit, Novartis Pharma Stein AG, Stein, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandra Staerk
Microbiological Quality Control Unit, Novartis Pharma Stein AG, Stein, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Roesti
Microbiological Quality Control Unit, Novartis Pharma Stein AG, Stein, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Environmental monitoring represents an integral part of the microbiological quality control system of a pharmaceutical manufacturing operation. However, guidance documents differ regarding recommendation of a procedure, particularly regarding incubation time, incubation temperature, or nutrient media. Because of these discrepancies, many manufacturers decide for a particular environmental monitoring sample incubation strategy and support this decision with validation data. Such validations are typically laboratory-based in vitro studies, meaning that these are based on comparing incubation conditions and nutrient media through use of cultured microorganisms. An informal survey of the results of these in vitro studies performed at Novartis or European manufacturing sites of different pharmaceutical companies highlighted that no consensus regarding the optimal incubation conditions for microbial recovery existed. To address this question differently, we collected a significant amount of samples directly from air, inanimate surfaces, and personnel in pharmaceutical production and packaging rooms during manufacturing operation (in situ study). Samples were incubated under different conditions suggested in regulatory guidelines, and recovery of total aerobic microorganisms as well as moulds was assessed. We found the highest recovery of total aerobic count from areas with personnel flow using a general microbiological growth medium incubated at 30–35 °C. The highest recovery of moulds was obtained with mycological medium incubated at 20–25 °C. Single-plate strategies (two-temperature incubation or an intermediate incubation temperature of 25–30 °C) also yielded reasonable recovery of total aerobic count and moulds. However, recovery of moulds was found to be highly inefficient at 30–35 °C compared to lower incubation temperatures. This deficiency could not be rectified by subsequent incubation at 20–25 °C. A laboratory-based in vitro study performed in parallel was inconclusive. We consider our results potentially conferrable to other pharmaceutical manufacturing sites in moderate climate zones and believe that these should represent a valuable reference for definition of the incubation strategy of microbiological environmental monitoring samples.

LAY ABSTRACT: Microbiological environmental monitoring confirms that pharmaceutical cleanrooms are in an appropriate hygienic condition for manufacturing of drug products. Guidance documents from different health authorities or expert groups differ regarding recommendation of the applied incubation time, incubation temperature, or nutrient media. Therefore, many pharmaceutical manufacturers perform studies that aim to identify the optimal incubation setup for environmental monitoring samples. An informal survey of the results of such studies, which had been performed at Novartis or European manufacturing sites of different pharmaceutical companies, highlighted no consensus regarding the optimal incubation conditions for microbial recovery. All these studies had been conducted in the laboratory using selections of cultured microbial strains. We tried to solve this disagreement by collecting a significant amount of real environmental monitoring samples directly from the environment in pharmaceutical production and packaging rooms during manufacturing operation. These samples were then incubated under different conditions suggested in the regulatory guidelines. We believe that the results of our study are more meaningful than laboratory-based experiments because we used environmental samples with microorganisms directly isolated from the manufacturing area. Therefore, we believe that our results should represent a valuable reference for definition of the incubation strategy of microbiological environmental monitoring samples.

  • Environmental monitoring
  • Incubation conditions
  • Incubation temperature
  • Nutrient media
  • Microbiology
  • Cleanroom
  • © PDA, Inc. 2014
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 5
September/October 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring
Oliver Gordon, Manfred Berchtold, Alexandra Staerk, David Roesti
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 394-406; DOI: 10.5731/pdajpst.2014.00994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring
Oliver Gordon, Manfred Berchtold, Alexandra Staerk, David Roesti
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 394-406; DOI: 10.5731/pdajpst.2014.00994
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Establishment of a Single Temperature Incubation Approach for Environmental Monitoring Samples with Focus on Mold Recoveries
  • Multisite Qualification of an Automated Incubator and Colony Counter for Environmental and Bioburden Applications in Pharmaceutical Microbiology
  • Environmental and Personnel Monitoring Programs--A Risk-Based Case Study of Cutibacterium acnes
  • Mold Control and Detection in Biological Drug Substance Manufacturing Facilities: An Industry Perspective
  • Multicenter Study on Incubation Conditions for Environmental Monitoring and Aseptic Process Simulation
  • Evaluation of the Recovery Rate of Different Swabs for Microbial Environmental Monitoring
  • Google Scholar

More in this TOC Section

  • A Proof-of-Concept Study on a Universal Standard Kit to Evaluate the Risks of Inspectors for Their Foundational Ability of Visual Inspection of Injectable Drug Products
  • Understanding Alignment in the Execution of Extractable Screening Studies Between Laboratories: Results of the ELSIE Lab Practices Sub-Team Industry Surveys
  • Definition of Particle Visibility Threshold in Parenteral Drug Products—Towards Standardization of Visual Inspection Operator Qualification
Show more Research

Similar Articles

Keywords

  • Environmental monitoring
  • Incubation conditions
  • Incubation temperature
  • Nutrient media
  • Microbiology
  • Cleanroom

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire