Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria

Kanami Irie, Allison Scott and Norio Hasegawa
PDA Journal of Pharmaceutical Science and Technology September 2014, 68 (5) 478-493; DOI: https://doi.org/10.5731/pdajpst.2014.01000
Kanami Irie
1Azbil Corporation, Kawana, Fujisawa-shi, Kanagawa, Japan; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: k.irie.si@azbil.com
Allison Scott
2Azbil BioVigilant, Tucson, AZ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norio Hasegawa
1Azbil Corporation, Kawana, Fujisawa-shi, Kanagawa, Japan; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Oliver J. D.
    The viable but nonculturable state in bacteria. J. Microbiol. 2005, 43 (S), 93–100.
    OpenUrlPubMedWeb of Science
  2. 2.↵
    1. Oliver J. D.
    Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34 (4), 415–425.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Shintani H.,
    2. Sakudo A.,
    3. Mcdonnel G. E.
    Methods of rapid microbiological assay and their application to pharmaceutical and medical device fabrication. Biocontrol Sci. 2011, 16 (1), 13–21.
    OpenUrlPubMed
  4. 4.↵
    1. Gordon O.,
    2. Gray J. C.,
    3. Anders H.-J.,
    4. Staerk A.,
    5. Schlaefli O.,
    6. Neuhaus G.
    Over view of rapid microbiological methods evaluated, validated and implemented for microbiological quality control. Eur. Pharm. Rev. 2011, 16 (2).
  5. 5.↵
    1. Gray J. C.,
    2. Morandell D.,
    3. Gapp G.,
    4. Goff N. L.,
    5. Neuhaus G.,
    6. Staerk A.
    Identification of micro-organisms after Milliflex Rapid detection. A possibility to identify nonsterile findings in the Milliflex Rapid sterility test. PDA J. Pharm. Sci. Technol. 2011, 65 (1), 42–54.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Eaton T.,
    2. Wardle C.,
    3. Whyte W.
    Use of a real-time microbial air sampler for operational cleanroom monitoring. PDA J. Pharm. Sci. Technol. 2014, 68 (2), 172–184.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Naramura T.,
    2. Ide T.,
    3. Sekimoto K.,
    4. Takesawa S.
    Novel system to detect bacteria in real time in aquatic environments. Biocontrol Sci. 2013, 18 (2), 75–82.
    OpenUrlPubMed
  8. 8.↵
    1. Benson R. C.,
    2. Meyer R. A.,
    3. Zaruba M. E.,
    4. McKhann G. M.
    Cellular autofluorescence—Is it due to flavins? J. Histochem. Cytochem. 1979, 27 (1), 44–48.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Dalterio R. A.,
    2. Nelson W. H.,
    3. Britt D.,
    4. Sperry J. F.,
    5. Tanguay J. F.,
    6. Suib S. L.
    The steady-state and decay characteristics of primary fluorescence from live bacteria. Appl. Spectrosc. 1987, 41 (2), 234–241.
    OpenUrl
  10. 10.↵
    1. Li J.-K.,
    2. Asali E. C.,
    3. Humphrey A. E.,
    4. Horvath J. J.
    Monitoring cell concentration and activity by multiple excitation fluorometry. Biotechnol. Prog. 1991, 7 (1), 21–27.
    OpenUrlPubMed
  11. 11.↵
    1. Pinnick R. G.,
    2. Hill S. C.,
    3. Nachman P.,
    4. Pendleton J. D.,
    5. Fernandez G. L.,
    6. Mayo M. W.,
    7. Bruno J. G.
    Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol. Sci. Technol. 1995, 23 (4), 653–664.
    OpenUrl
  12. 12.↵
    1. Agranovski V.,
    2. Ristovski Z.,
    3. Hargreaves M.,
    4. Blackall P. J.,
    5. Morawska L.
    Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. J. Aerosol Sci. 2003, 34 (12), 1711–1727.
    OpenUrlCrossRef
  13. 13.↵
    1. Pan Y.-L.,
    2. Boutou V.,
    3. Bottiger J. R.,
    4. Zhang S. S.,
    5. Wolf J.-P.,
    6. Chang R. K.
    A puff of air sorts bioaerosols for pathogen identification. Aerosol Sci. Technol. 2004, 38 (6), 598–602.
    OpenUrl
  14. 14.↵
    1. Huang H. C.,
    2. Pan Y.-L.,
    3. Hill S. C.,
    4. Pinnick R. G.,
    5. Chang R. K.
    Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Opt. Express 2008, 16 (21), 16523–16528.
    OpenUrlPubMed
  15. 15.↵
    1. Miller M. J.,
    2. Lindsay H.,
    3. Valverde-Ventura R.,
    4. O'Conner M. J.
    Evaluation of the BioVigilant® IMD-ATM, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part 1. Review of the technology and comparative studies with conventional methods. PDA J. Pharm. Sci. Technol. 2009, 63 (3), 245–258.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Lee B. U.,
    2. Jung J. H.,
    3. Yun S. H.,
    4. Hwang G. B.,
    5. Bae G. N.
    Application of UVAPS to real-time detection of inactivation of fungal bioaerosols due to thermal energy. J. Aerosol Sci. 2010, 41 (7), 694–701.
    OpenUrl
  17. 17.↵
    1. Kaliszewski M.,
    2. Trafny E. A.,
    3. Lewandowski R.,
    4. Wlodarski M.,
    5. Bombalska A.,
    6. Kopczynski K.,
    7. Antos-Bielska M.,
    8. Szpakowska M.,
    9. Mlynczak J.,
    10. Mularczyk-Oliwa M.,
    11. Kwasny M.
    A new approach to UVAPS data analysis towards detection of biological aerosol. J. Aerosol Sci. 2013, 58, 148–157.
    OpenUrl
  18. 18.↵
    USP <1223> Validation of Alternative Microbiological Methods. Pharmacopeial Forum, Vol. 33; United States Pharmacopeial Convention, Inc.: Rockville, MD, 2010.
  19. 19.↵
    EP 5.1.6. Alternative Methods for Control of Microbiological Quality. European Pharmacopoeia, 2009.
  20. 20.↵
    PDA Technical Report No. 33 (Revised 2013). Evaluation, Validation and Implementation of Alternative and Rapid Microbiological Methods.
  21. 21.↵
    1. Hurst A.
    Bacterial injury: a review. Can. J. Microbiol. 1977, 23 (8), 935–944.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Shintani H.
    Importance of considering injured microorganisms in sterilization validation. Biocontrol Sci. 2006, 11 (3), 91–106.
    OpenUrlPubMed
  23. 23.↵
    1. Wesche A. M.,
    2. Gurtler J. B.,
    3. Marks B. P.,
    4. Ryser E. T.
    Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Protect. 2009, 72 (5), 1121–1138.
    OpenUrlPubMedWeb of Science
  24. 24.↵
    1. Gray J. C.,
    2. Staerk A.,
    3. Berchtold M.,
    4. Hecker W.,
    5. Neuhaus G.,
    6. Wirth A.
    Growth-promoting properties of different solid nutrient media evaluated with stressed and unstressed micro-organisms: prestudy for the validation of a rapid sterility test. PDA J. Pharm. Sci. Technol. 2010, 64 (3), 249–263.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Irie K.,
    2. Hasegawa N.
    Quantitative Correlation of Growth Delay Time and the Amount of Heat Loads in Heat Stressed Bacteria. SAAAJ 39th Annual Workshop, Tokyo, Japan, September 11–12, 2012, p 240 (in Japanese).
  26. 26.↵
    1. Irie K.,
    2. Hasegawa N.
    Influence of Aerosolization and Capture Process to Heat Stressed Bacteria. SIEJ 2012 Annual Meeting, Tokyo, Japan, December 15–16, 2012, p 110 (in Japanese).
  27. 27.↵
    1. Stephens P. J.,
    2. Joynson J. A.,
    3. Davies K. W.,
    4. Holbrook R.,
    5. Lappin-Scott H. M.,
    6. Humphrey T. J.
    The use of an automated growth analyser to measure recovery times of single heat-injured Salmonella cells. J. Appl. Microbiol. 1997, 83, 445–455.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Takano M.,
    2. Tsuchido T.
    Availability of growth delay analysis for the evaluation of total injury of stressed bacterial populations. J. Ferment. Technol. 1982, 60 (3), 189–198.
    OpenUrl
  29. 29.↵
    1. Tsuchido T.,
    2. Koike T.,
    3. Takano M. A
    modified assessment of growth inhibition from growth-delay time in a cell population exposed to an environmental stress. J. Ferment. Bioeng. 1989, 67 (2), 132–134.
    OpenUrl
  30. 30.↵
    1. Ray B.,
    2. Speck M. L.
    Discrepancies in the enumeration of Escherichia coli. Appl. Microbiol. 1973, 25 (4), 494–498.
    OpenUrlPubMed
  31. 31.↵
    Pharmaceutical Online. Instantaneously Detect Microbes: Validation testing of IMD-A® 300/350 Systems, Azbil BioVigilant, Inc., 2011. http://www.pharmaceuticalonline.com/doc/usp-ep-validation-testing-of-imda-systems-0001. Accessed November, 5, 2013.
  32. 32.↵
    1. Hasegawa N.,
    2. Yamasaki S.,
    3. Horiguchi Y.
    A study of bacterial culturability during bioaerosol challenge test using a test chamber. J. Aerosol Sci. 2011, 42 (6), 397–407.
    OpenUrl
  33. 33.↵
    1. Griffiths W. D.,
    2. Stewart I. W.,
    3. Reading A. R.,
    4. Futter S. J.
    Effect of aerosolization, growth phase and residence time in spray and collection fluids on the culturability of cells and spores. J. Aerosol Sci. 1996, 27 (5), 803–820.
    OpenUrlCrossRef
  34. 34.↵
    1. Heidelberg J. F.,
    2. Shahamat M.,
    3. Levin M.,
    4. Rahman I.,
    5. Stelma G.,
    6. Grim C.,
    7. Colwell R. R.
    Effect of aerosolization on culturability and viability of Gram-negative bacteria. Appl. Environ. Microbiol. 1997, 63 (9), 3585–3588.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Buttner M. P.,
    2. Stetzenbach L. D.
    Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl. Environ. Microbiol. 1993, 59 (1), 219–226.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Yao M.,
    2. Mainelis G.
    Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol. Sci. Technol. 2006, 40 (8), 595–606.
    OpenUrl
  37. 37.↵
    1. Shintani H.,
    2. Sasaki K.,
    3. Kajiwara Y.,
    4. Itoh J.,
    5. Takahashi M.,
    6. Kokubo M.
    Validation of D value by different SCD culture medium manufacturer and/or different SCD culture medium constituent. PDA J. Pharm. Sci. Technol. 2000, 54 (1), 6–12.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Vorob'eva L. I.
    Stressors, stress reactions, and survival of bacteria: A review. Appl. Biochem. Microbiol. 2004, 40 (3), 217–224.
    OpenUrl
  39. 39.↵
    1. Hindle A. A.,
    2. Hall E. A. H.
    Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 1999, 124, 1599–1604.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Rosen D. L.,
    2. Sharpless C.,
    3. McGown L. B.
    Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal. Chem. 1997, 69 (6), 1082–1085.
    OpenUrlCrossRef
  41. 41.↵
    1. Nudelman R.,
    2. Feay N.,
    3. Hirsch M.,
    4. Efrima S.,
    5. Bronk B.
    Fluorescence of Dipicolinic Acid as a Possible Component of the Observed UV Emission Spectra of Bacterial Spores. Part of the SPIE Conference on Air Monitoring and Detection of Chemical and Biological Agents, Boston, MA, November 1998, 3533, pp 190–195.
  42. 42.↵
    1. Pellegrino P. M.,
    2. Fell N. F. Jr..,
    3. Gillespie J. B.
    Enhanced spore detection using dipicolinate extraction techniques. Anal. Chim. Acta 2002, 455 (2), 167–177.
    OpenUrlCrossRefWeb of Science
  43. 43.↵
    1. Kort R.,
    2. O'Brien A. C.,
    3. van Stokkum I. H. M.,
    4. Oomes S. J. C. M.,
    5. Crielaard W.,
    6. Hellingwerf K. J.,
    7. Brul S.
    Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl. Environ. Microbiol. 2005, 71 (7), 3556–3564.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Irie K.,
    2. Hasegawa N.
    Comparison of Heat-Stressed Bacteria Culturability Using Traditional Culture Method and Their Viability Using Fluorescence Staining Dye Method. SAAAJ 40th Annual Workshop, Osaka, Japan, September 10–11, 2013, p 190 (in Japanese).
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 5
September/October 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria
Kanami Irie, Allison Scott, Norio Hasegawa
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 478-493; DOI: 10.5731/pdajpst.2014.01000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Investigation of the Detection Ability of an Intrinsic Fluorescence-Based Bioaerosol Detection System for Heat-Stressed Bacteria
Kanami Irie, Allison Scott, Norio Hasegawa
PDA Journal of Pharmaceutical Science and Technology Sep 2014, 68 (5) 478-493; DOI: 10.5731/pdajpst.2014.01000
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion and Conclusions
    • Conflict of Interest Declaration
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Challenges Encountered in the Implementation of Bio-Fluorescent Particle Counting Systems as a Routine Microbial Monitoring Tool
  • Clinical Data on Hospital Environmental Hygiene Monitoring and Medical Staff Protection during the Coronavirus Disease 2019 Outbreak
  • Validation of Milliflex(R) Quantum for Bioburden Testing of Pharmaceutical Products
  • Google Scholar

More in this TOC Section

  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
Show more Research

Similar Articles

Keywords

  • Intrinsic fluorescence
  • Rapid microbiological method (RMM)
  • Heat-stressed microorganisms
  • IMD-A

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire