Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleCONFERENCE PROCEEDING

The Potential Role of Advanced Technologies for Virus Detection in Development and Regulation of Vaccines

Shasta D. McClenahan and Philip R. Krause
PDA Journal of Pharmaceutical Science and Technology November 2014, 68 (6) 552-555; DOI: https://doi.org/10.5731/pdajpst.2014.01030
Shasta D. McClenahan
Office of Vaccines Research and Review, Center for Biologics Evaluation and Research Food and Drug Administration
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip R. Krause
Office of Vaccines Research and Review, Center for Biologics Evaluation and Research Food and Drug Administration
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Philip.krause@fda.hhs.gov
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Sweet B. H.,
    2. Hilleman M. R.
    The vacuolating virus, S.V. 40. Proc. Soc. Exp. Biol. Med. 1960, 105 (2), 420–427.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Sierra-Honigmann A.,
    2. Krause P. R.
    Live oral poliovirus vaccines do not contain detectable simian virus 40 (SV40) DNA. Biologicals 2000, 28 (1), 1–4.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Strickler H. D.,
    2. Rosenberg P. S.,
    3. Devesa S. S.,
    4. Hertel J.,
    5. Fraumeni J. F. Jr..,
    6. Goedert J. J.
    Contamination of poliovirus vaccines with simian virus 40 (1955–1963) and subsequent cancer rates. J. Am. Med. Assoc. 1998, 279 (4), 292–295.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Strickler H. D.
    A multicenter evaluation of assays for detection of SV40 DNA and results in masked mesothelioma specimens. Cancer Epidemiol. Biomarkers Prev. 2001, 10 (5), 523–532.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Khan A. S.,
    2. Maudru T.,
    3. Thompson A.,
    4. Muller J.,
    5. Sears J. F.,
    6. Peden K. W.
    The reverse transcriptase activity in cell-free medium of chicken embryo fibroblast cultures is not associated with a replication-competent retrovirus. J. Clin. Virol. 1998, 11 (1), 7–18.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Robertson J. S.,
    2. Nicolson C.,
    3. Riley A. M.,
    4. Bentley M.,
    5. Dunn G.,
    6. Corcoran T.,
    7. Schild G. C.,
    8. Minor P.
    Assessing the significance of reverse transcriptase activity in chick cell–derived vaccines. Biologicals 1997, 25 (4), 403–414.
    OpenUrlCrossRefPubMed
  7. 7.↵
    World Health Organization. Reverse transcriptase activity in chicken cell–derived vaccine. Wkly Epidemiol. Rec. 1998, 73, 209–312.
    OpenUrlPubMed
  8. 8.↵
    1. Tsang S. X.,
    2. Switzer W. M.,
    3. Shanmugam V.,
    4. Johnson J. A.,
    5. Goldsmith C.,
    6. Wright A.,
    7. Fadly A.,
    8. Thea D.,
    9. Jaffe H.,
    10. Folks T. M.,
    11. Heneine W.
    Evidence of avian leukosis virus subgroup E and endogenous avian virus in measles and mumps vaccines derived from chicken cells: investigation of transmission to vaccine recipients. J. Virol. 1999, 73 (7), 5843–5851.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Shahabuddin M.,
    2. Sears J. F.,
    3. Khan A. S.
    No evidence of infectious retroviruses in measles virus vaccines produced in chicken embryo cell cultures. J. Clin. Microbiol. 2001, 39 (2), 675–684.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Victoria J. G.,
    2. Wang C.,
    3. Jones M. S.,
    4. Jaing C.,
    5. McLoughlin K.,
    6. Gardner S.,
    7. Delwart E. L.
    Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. J. Virol. 2010, 84 (12), 6033–6040.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. McClenahan S. D.,
    2. Krause P. R.,
    3. Uhlenhaut C.
    Molecular and infectivity studies of porcine circovirus in vaccines. Vaccine 2011, 29 (29), 4745–4753.
    OpenUrlPubMed
  12. 12.↵
    1. Dubin G.,
    2. Toussaint J. F.,
    3. Cassart J. P.,
    4. Howe B.,
    5. Boyce D.,
    6. Friedland L.,
    7. Abu-Elyazeed R.,
    8. Poncelet S.,
    9. Han H. H.,
    10. Debrus S.
    Investigation of a regulatory agency enquiry into potential porcine circovirus type 1 contamination of the human rotavirus vaccine, Rotarix: approach and outcome. Hum. Vaccin. Immunother. 2013, 9 (11), 2398–2408.
    OpenUrlPubMed
  13. 13.↵
    1. McClenahan S.,
    2. Uhlenhaut C.,
    3. Krause P. R.
    Regulatory approaches for control of viral contamination of vaccines. PDA J. Pharm. Sci. Technol. 2011, 65 (6), 557–562.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. McClenahan S.,
    2. Uhlenhaut C.,
    3. Krause P.
    Optimization of virus detection in cells using massively parallel sequencing. Biologicals 2014, 42 (1), 34–41.
    OpenUrlPubMed
  15. 15.↵
    1. McClenahan S. D.,
    2. Uhlenhaut C.,
    3. Krause P. R.
    Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine 2014, in press.
  16. 16.↵
    1. Onions D.,
    2. Kolman J.
    Massively parallel sequencing, a new method for detecting adventitious agents. Biologicals 2010, 38 (3), 377–380.
    OpenUrlPubMed
  17. 17.↵
    1. Onions D.,
    2. Côté C.,
    3. Love B.,
    4. Toms B.,
    5. Koduri S.,
    6. Armstrong A.,
    7. Chang A.,
    8. Kolman J.
    Ensuring the safety of vaccine cell substrates by massively parallel sequencing of the transcriptome. Vaccine 2011, 29 (41), 7117–7121.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Ma H.,
    2. Galvin T. A.,
    3. Glasner D. R.,
    4. Shaheduzzaman S.,
    5. Khan A. S.
    Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines. J. Virol. 2014, 88 (12), 6576–6585.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Estep R. D.,
    2. Messaoudi I.,
    3. Wong S. W.
    Simian herpesviruses and their risk to humans. Vaccine. 2010, 28 (Suppl 2), B78–B84.
    OpenUrlCrossRefPubMed
  20. 20.↵
    United States Food and Drug Administration. Update on Recommendations for the Use of Rotavirus Vaccines. http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm212140.htm.
  21. 21.↵
    Vaccines and Related Biological Products Advisory Committee. Finding of PCV DNA Sequences in Rotavirus Vaccines. May 7, 2010.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 6
November/December 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Potential Role of Advanced Technologies for Virus Detection in Development and Regulation of Vaccines
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The Potential Role of Advanced Technologies for Virus Detection in Development and Regulation of Vaccines
Shasta D. McClenahan, Philip R. Krause
PDA Journal of Pharmaceutical Science and Technology Nov 2014, 68 (6) 552-555; DOI: 10.5731/pdajpst.2014.01030

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The Potential Role of Advanced Technologies for Virus Detection in Development and Regulation of Vaccines
Shasta D. McClenahan, Philip R. Krause
PDA Journal of Pharmaceutical Science and Technology Nov 2014, 68 (6) 552-555; DOI: 10.5731/pdajpst.2014.01030
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Footnotes
    • References
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

CONFERENCE PROCEEDING

  • Proceedings of the 2017 Viral Clearance Symposium, Session 2.1: DSP Unit Operations—Virus Filtration/Inactivation
  • Proceedings of the 2017 Viral Clearance Symposium, Session 2.2: DSP Unit Operations–Purification Unit Operations
  • Proceedings of the 2017 Viral Clearance Symposium—
Show more CONFERENCE PROCEEDING

Needs and Challenges for Using New Technologies

  • Need for New Technologies for Detection of Adventitious Agents in Vaccines and Other Biological Products
Show more Needs and Challenges for Using New Technologies

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire