Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review

Dennis R. Jenke, Cheryl L. M. Stults, Diane M. Paskiet, Douglas J. Ball and Lee M. Nagao
PDA Journal of Pharmaceutical Science and Technology January 2015, 69 (1) 1-48; DOI: https://doi.org/10.5731/pdajpst.2015.01005
Dennis R. Jenke
1Baxter Healthcare Corporation, Round Lake, IL;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dennis_jenke@baxter.com
Cheryl L. M. Stults
2Novartis Pharmaceuticals Corporation, San Carlos, CA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diane M. Paskiet
3West Pharmaceutical Services, Exton, PA;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas J. Ball
4Pfizer, Inc., Groton, CT; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lee M. Nagao
5Drinker Biddle and Reath, LLP, Washington, DC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, while sources of certain elemental impurities may be ubiquitous in the natural environment, they are not ubiquitous in materials used in pharmaceutical packaging and manufacturing systems and when they are present, they are not extensively leached under relevant conditions. The information summarized here can be utilized to aid the elemental impurity risk assessment process by providing the identities of commonly reported elements and data to support probability estimates of those becoming elemental impurities in the drug product. Furthermore, recommendations are made related to establishing elements of potential product impact for individual materials.

LAY ABSTRACT: Extraneous impurities in drug products provide no therapeutic benefit and thus should be known and controlled. Elemental impurities can arise from a number of sources and by a number of means, including the leaching of elemental entities from drug product packaging and manufacturing systems. To understand the extent to which materials used in packaging systems contain elemental entities and the extent to which those entities leach into drug products to become elemental impurities, the Extractables and Leachables Safety Information Exchange (ELSIE) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) Consortia have jointly performed a literature review on this subject. Using the compiled information, it was concluded that while packaging materials may contain elemental entities, unless those entities are intentional parts of the materials, the amounts of those elemental entities are generally low. Furthermore, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, risk assessment of sources of elemental impurities in drug products that may be related to materials used in pharmaceutical packaging and manufacturing systems can utilize the information and recommendations presented here.

  • Elemental impurities
  • Polymers
  • Pharmaceutical manufacturing systems
  • Packaging systems
  • Extractables
  • Leachables

Footnotes

  • Extractables and Leachables Safety Information Exchange (ELSIE), Washington, DC.

  • International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS), Washington, DC.

  • Observations made, opinions expressed and conclusions drawn in this article reflect the views of the authors acting in their role as participants in ELSIE and IPAC-RS and should not be construed to represent the views or policies of their affiliated organizations.

  • © PDA, Inc. 2015
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 69 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 69, Issue 1
January/February 2015
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review
Dennis R. Jenke, Cheryl L. M. Stults, Diane M. Paskiet, Douglas J. Ball, Lee M. Nagao
PDA Journal of Pharmaceutical Science and Technology Jan 2015, 69 (1) 1-48; DOI: 10.5731/pdajpst.2015.01005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review
Dennis R. Jenke, Cheryl L. M. Stults, Diane M. Paskiet, Douglas J. Ball, Lee M. Nagao
PDA Journal of Pharmaceutical Science and Technology Jan 2015, 69 (1) 1-48; DOI: 10.5731/pdajpst.2015.01005
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: An Updated Literature Review
  • How One Might Experimentally Determine if Container Closure Systems and Their Components and Materials of Construction Contribute Elemental Impurities To Packaged Pharmaceutical Drug Products
  • Assessment of Extractable Elements from Elastomers
  • Extractables Screening of Polypropylene Resins Used in Pharmaceutical Packaging for Safety Hazards
  • Creating a Holistic Extractables and Leachables (E&L) Program for Biotechnology Products
  • Google Scholar

More in this TOC Section

  • The Role of Microbiologists in Drug Product Development
  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Keywords

  • Elemental impurities
  • Polymers
  • Pharmaceutical manufacturing systems
  • Packaging systems
  • Extractables
  • Leachables

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire