Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

Adapting to Biology: Maintaining Container–Closure System Compatibility with the Therapeutic Biologic Revolution

Dominick Degrazio
PDA Journal of Pharmaceutical Science and Technology March 2015, 69 (2) 219-235; DOI: https://doi.org/10.5731/pdajpst.2015.01032
Dominick Degrazio
West Pharmaceutical Services, Exton, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ddegrazi@fandm.edu
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Ukraintseva S.V.,
    2. Yashin A. I.
    Individual aging and cancer risk: How are they related? Demographic Research 2003, 9 (8), 163–196.
    OpenUrl
  2. 2.↵
    1. Leader B.,
    2. Baca Q. J.,
    3. Golan D. E.
    Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7 (1), 21–39.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. van Beers M. M.,
    2. Bardor M.
    Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotech. J. 2012, 7 (12), 1473–1484.
    OpenUrl
  4. 4.↵
    1. Schellekens H.
    Follow-on biologics: challenges of the ǹext generation'. Nephrol. Dial. Transplant. 2005, 20 (Suppl. 4), iv31–iv36.
    OpenUrlAbstract
  5. 5.↵
    U.S. Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for Industry—Early clinical trials with live biotherapeutic products: Chemistry, manufacturing, and control information, 2012.
  6. 6.↵
    1. Bee J. S.,
    2. Nelson S. A.,
    3. Freund E.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    ; Precipitation of a monoclonal antibody by soluble tungsten. J. Pharm. Sci. 2009, 98 (9), 3290–3301.
    OpenUrlCrossRefPubMed
  7. 7.↵
    U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry—Immunogenicity assessment for therapeutic protein products, 1999.
  8. 8.↵
    U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry—Container closure systems for packaging human drugs and biologics, 1999.
  9. 9.↵
    1. Baumann A.
    Early development of therapeutic biologics—pharmacokinetics. Curr. Drug Metab. 2006, 7 (1), 15–21.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Kuriyan J.,
    2. Konforti B.,
    3. Wemmer D.
    The Molecules of Life: Physical and Chemical Principles, 1st ed.; Garland Science: New York, 2013; p 28.
  11. 11.↵
    1. Lins L.,
    2. Brasseur R.
    The hydrophobic effect in protein folding. FASEB J. 1995, 9 (7), 535–540.
    OpenUrlAbstract
  12. 12.↵
    1. Petsko G. A.,
    2. Ringe D.
    Protein Structure and Function: Primers in Biology, 1st ed.; Sinauer Assoc. Inc.: London, 2003; p 23.
  13. 13.↵
    1. Zhou S.,
    2. Lewis L.,
    3. Singh S. K.
    Metal leachables in therapeutic biologic products: origin, impact and detection. Am. Pharm. Rev. 2010, 13 (4), 76.
    OpenUrl
  14. 14.↵
    1. Gummadi S. N.
    What is the role of thermodynamics on protein stability? Biotechnol. Bioprocess Eng. 2003, 8 (1), 9–18.
    OpenUrl
  15. 15.↵
    1. Harano Y.
    Application of hydration thermodynamics to the evaluation of protein structures and protein-ligand binding. Entropy 2012, 14 (8), 1443–1468.
    OpenUrl
  16. 16.↵
    1. Yasuda S.,
    2. Oshima H.,
    3. Kinoshita M.
    Structural stability of proteins in aqueous and nonpolar environments. J. Chem. Phys 2012, 137 (13), 135103.
    OpenUrlPubMed
  17. 17.↵
    1. Chi E. Y.,
    2. Krishnan S.,
    3. Kendrick B. S.,
    4. Chang B. S.,
    5. Carpenter J. F.,
    6. Randolph T. W.
    Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci. 2003, 12 (5), 903–913.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Change B.S.,
    2. Yeung B.
    Physical Stability of Protein Pharmaceuticals. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals, 1st ed.; Wiley Inc.: New York, 2010; p 69.
  19. 19.↵
    1. Patel J.,
    2. Kothari R.,
    3. Tunga R.,
    4. Ritter N. M.,
    5. Tunga B. S.
    Stability considerations for biopharmaceuticals, Part 1: Overview of protein and peptide degradation pathways. BioProcess Int. 2011, 9 (1), 20–31.
    OpenUrl
  20. 20.↵
    1. Powell M. F.
    Peptide Stability in Aqueous Parenteral Formulations: Prediction of Chemical Stability Based on Primary Sequence. In Formulation and Delivery of Proteins and Peptides, 1st ed.; ACS Symposium, 1994, p 100.
  21. 21.↵
    1. Li S.,
    2. Nguyen T. H.,
    3. Schoneich C.,
    4. Borchardt R. T.
    Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. Biochemistry 34 (17), 5762–5772.
  22. 22.↵
    1. Chirmule N.,
    2. Jawa V.,
    3. Meibohm B.
    Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012, 14 (2), 296–302.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Jiskoot W.,
    2. Randolph T. W.,
    3. Volkin D. B.,
    4. Middaugh C. R.,
    5. Schoneich C.,
    6. Winter G.,
    7. Friess W.,
    8. Crommelin D. J.,
    9. Carpenter J. F.
    Protein instability and immunogenicity: Roadblocks to clinical application of injectable protein delivery systems for sustained release. J. Pharm. Sci. 2012, 101 (3), 946–954.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Brennan T.V.,
    2. Clarke S.
    Deamidation and Isoaspartate Formation in Model Synthetic Peptides: The Effects of Sequence and Solution Environment. In Deamidation and Isoaspartate Formation in Peptides and Proteins, 1st ed.; CRC Press: Boca Raton, FL, 1995; p 65.
  25. 25.↵
    1. Patel K.,
    2. Borchardt R. T.
    Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm. Res. 1990, 7 (7), 703–711.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Xie M.,
    2. Schowen R. L.
    Secondary structure and protein deamidation. J. Pharm. Sci. 1999, 88 (1), 8–13.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Robinson N. E.
    Protein deamidation. Proc. Nat. Soc. Sci. 2002, 99 (8), 5283–5288.
    OpenUrl
  28. 28.↵
    1. Miyata T.
    1. Monnier V. M.,
    2. Nemet I.,
    3. Sell D. R.,
    4. Weiss M. F.
    Transition Metals and Other Forms of Oxidative Protein Damage in Renal Disease. In Studies on Renal Disorders, Oxidative Stress in Applied Basic Research and Clinical Practice, 1st ed.; Miyata T., Ed.; Springer; New York, 2011; p 25.
  29. 29.↵
    1. Shacter E.
    Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 2000, 32 (3–4), 307–326.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Li S.,
    2. Schöneich C.,
    3. Borchardt R. T.
    Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotech. Bioeng. 1995, 48 (5), 490–500.
    OpenUrl
  31. 31.↵
    1. Stadtman E. R.
    Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Ann. Rev. Biochem. 1993, 62 (1), 797–821.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Gsponer J.,
    2. Vendruscolo M.
    Theoretical approaches to protein aggregation. Protein Pept. Lett. 2006, 13 (3), 287–293.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Philo J. S.,
    2. Arawaka T.
    Mechanisms of protein aggregation. Curr. Pharm. Biotechnol. 2009, 10 (4), 348–351.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Borgia M. B.,
    2. Nickson A. A.,
    3. Clarke J.,
    4. Hounslow M. J.
    A mechanistic model for amorphous protein aggregation of immunoglobulin -like domains. J. Am. Chem. Soc. 2013, 135 (17), 6456–6464.
    OpenUrlCrossRefPubMedWeb of Science
  35. 35.↵
    1. Stranks S.,
    2. Ecroyd H.,
    3. Van Slutyer S.,
    4. Waters E. J.,
    5. Carver J. A.,
    6. von Smekal L.
    Model for amorphous aggregation processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80 (5), 051907.
  36. 36.↵
    1. Morris A. M.,
    2. Watzky M. A.,
    3. Finke R. G.
    Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim. Biophys. Acta 2009, 1794 (3), 375–397.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Sleutel M.,
    2. Van Driessche A. E. S.,
    3. Pan W.,
    4. Reichel E. K.,
    5. Maes D.,
    6. Vekilow P. G.
    Does solution viscosity scale the rate of aggregation of folding proteins? J. Phys. Chem. Lett. 2012, 3 (10), 1258–1263.
    OpenUrlCrossRef
  38. 38.↵
    1. Beerten J.,
    2. Schymkowitz J.,
    3. Rousseau F.
    Aggregation prone regions and gatekeeping residues in protein sequences. Curr. Top. Med. Chem. 2012, 12 (22), 2470–2478.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Rousseau F.,
    2. Schymkowitz J.,
    3. Serrano L.
    Protein aggregation and amyloidosis: confusion of the kinds? Curr. Opin. Struc. Biol. 2006, 16 (1), 118–126.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.↵
    1. Linding R.,
    2. Schymkowitz J.,
    3. Rousseau F.,
    4. Diella F.,
    5. Serrano L.
    A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J. Mol. Biol. 2004, 342 (1), 345–353.
    OpenUrlCrossRefPubMedWeb of Science
  41. 41.↵
    1. Baldwin R. L.,
    2. Frieden C.,
    3. Rose G. D.
    Dry molten globule intermediates and the mechanism of protein unfolding. Proteins 2010, 78 (13), 2725–2737.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Roseberg A. S.
    Effects of protein aggregates: an immunologic perspective. AAPS J. 2006, 8 (3), E501–E507.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Kayser O.,
    2. Muller R. H.
    1. Meibohm B.,
    2. Derendorf H.
    Pharmacokinetics and Pharmacodynamics of Biotech Drugs. In Pharmaceutical Biotechnology, Drug Discovery, and Clinical Applications; Kayser O., Muller R. H., Eds.; Wiley-VCH Verlag GmbH: New York, 2004.
  44. 44.↵
    1. Crommelin D. J. A.,
    2. Sindelar R. D.,
    3. Meibohm B.
    1. Meibohm B.,
    2. Braeckman R. A.
    Pharmacokinetics and Pharmacodynamics of Peptides and Proteins. In Pharmaceutical Biotechnology: Concepts and Applications, 3rd ed.; Crommelin D. J. A., Sindelar R. D., Meibohm B., Eds; Informa Healthcare: New York, 2007; p 95.
  45. 45.↵
    1. Schellekens H.
    Immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant. 2003, 18 (7), 1257–1259.
    OpenUrlFREE Full Text
  46. 46.↵
    1. Purcell R. T.,
    2. Lockey R. F.
    Immunologic responses to therapeutic biologic agents. J. Investig. Allergol. Clin. Immunol. 2008, 18 (5), 335–342.
    OpenUrlPubMed
  47. 47.↵
    1. Tang L.,
    2. Persky A. M.,
    3. Hochhaus G.,
    4. Meibohm B.
    Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 2004, 93 (9), 2184–2204.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Vugmeyster Y.,
    2. Xu X.,
    3. Theil F.-P.,
    4. Khawli L. A.,
    5. Leach M. W.
    Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J. Biol. Chem. 2012, 3 (4) 73–92.
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Wang W.,
    2. Wang E. Q.,
    3. Balthasar J. P.
    Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84 (5), 548–558.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Haynes C. A.,
    2. Norde W.
    Globular proteins at solid/liquid interfaces. Colloid. Surf., B Biointerfaces 1994, 2 (6), 517–566.
    OpenUrl
  51. 51.↵
    1. Brash J. L.,
    2. Wojciechowski P. W.
    1. Norde W.,
    2. Haynes C. A.
    Thermodynamics of Protein Adsorption. In Interfacial Phenomena and Bioproducts, Bioprocess Technology Series; Brash J. L., Wojciechowski P. W., Eds.; Marcel Dekker: New York, 1996; p 123.
  52. 52.↵
    1. Vogler E. A.
    Protein adsorption in three dimensions. Biomaterials 2012, 33 (5), 1201–1237.
    OpenUrlPubMed
  53. 53.↵
    1. Dixit N.,
    2. Maloney K. M.,
    3. Kalonia D. S.
    Effect of processing parameters on the physical stability of silicone coatings. AAPS PharmSciTech 2012, 13 (4), 1116–1119.
    OpenUrlPubMed
  54. 54.↵
    1. Badkar A.,
    2. Wolf A.,
    3. Bohack L.,
    4. Kolhe P.
    Development of biotechnology products in pre-filled syringes: technical considerations and approaches. AAPS PharmSciTech 2011, 12 (2), 564–572.
    OpenUrlPubMed
  55. 55.↵
    1. Liu L.,
    2. Ammar D. A.,
    3. Ross L. A.,
    4. Mandava N.,
    5. Kahook M. Y.,
    6. Carpenter J. F.
    Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest. Ophthalmol. Vis. Sci. 2011, 52 (2), 1023–1034.
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Seidl A.,
    2. Hainzl O.,
    3. Richter M.,
    4. Fischer R.,
    5. Bohm S.,
    6. Deutel B.,
    7. Hartinger M.,
    8. Windisch J.,
    9. Casadevall N.,
    10. London G. M.,
    11. Macdougall I.
    Tungsten-induced denaturation and aggregation of epoetin alpha during primary packaging as a cause of immunogenicity. Pharm. Res. 2012, 29 (6), 1454–1467.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Greenwood N. N.,
    2. Earnshaw A.,
    3. Greenwood N.
    Chemistry of the Elements, 2nd ed.; Elsevier Butterworth-Heinemann: Burlington, MA, 1997.
  58. 58.↵
    1. Ball D. J.,
    2. Norwood D. L.,
    3. Stults C. L. M.,
    4. Nagao L. M.
    Leachables and Extractables Handbook: Safety Evaluation, Qualification, and Best Practices Applied to Inhalation Drug Products; Wiley Inc.: Hoboken, NJ, 2012; p 29.
  59. 59.↵
    1. Kehrer J. P.
    The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149 (1), 43–50.
    OpenUrlCrossRefPubMedWeb of Science
  60. 60.↵
    1. Hawkins C. L.,
    2. Pattison D. I.,
    3. Davies M. J.
    Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003, 25 (2–3), 259–274.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.↵
    1. Liu D.,
    2. Nashed-Samuel Y.,
    3. Bondarenko P. V.,
    4. Brems D. N.,
    5. Ren D.
    Interactions between therapeutic proteins and acrylic acid leachable. PDA J. Pharm. Sci. and Technol. 2012, 66 (1), 12–19.
    OpenUrl
  62. 62.↵
    1. LoPachin R. M.,
    2. Barber D.,
    3. Gavin T.
    Molecular mechanisms of the conjugated α,β-unsaturated carbonyl derivatives: Relevance to neurotoxicity and neurodegenerative diseases. Toxicological Sci. 2008, 104 (2), 235–249.
    OpenUrlAbstract/FREE Full Text
  63. 63.↵
    1. Elfarra A. A.
    1. Elfarra A. A.,
    2. Krause R. J.
    Michael Addition–Elimination Reactions: Roles in Toxicity and Potential New Therapeutic Applications. In Advances in Bioactivation Research; Elfarra A. A. Ed.; Springer; New York, 2008, p 57.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 69 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 69, Issue 2
March/April 2015
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Adapting to Biology: Maintaining Container–Closure System Compatibility with the Therapeutic Biologic Revolution
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Adapting to Biology: Maintaining Container–Closure System Compatibility with the Therapeutic Biologic Revolution
Dominick Degrazio
PDA Journal of Pharmaceutical Science and Technology Mar 2015, 69 (2) 219-235; DOI: 10.5731/pdajpst.2015.01032

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Adapting to Biology: Maintaining Container–Closure System Compatibility with the Therapeutic Biologic Revolution
Dominick Degrazio
PDA Journal of Pharmaceutical Science and Technology Mar 2015, 69 (2) 219-235; DOI: 10.5731/pdajpst.2015.01032
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Small Molecules vs Therapeutic Biologics
    • Stability of Proteins
    • Protein Instabilities
    • Chemical Modifications
    • Physical Instabilities
    • Immunogenicity of Therapeutic Biologics
    • Compatibility of Primary Parenteral Packaging Components with Biologics
    • Conclusion
    • List/Definition of Symbols
    • Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Focus on Bioburden Culture Media and Medical Devices
  • Using Analytical Platform Technologies to Support Accelerated Product Development—Concept Review and Case Study
  • Evaluating Nitrosamines from Elastomers in Pharmaceutical Primary Packaging
Show more Review

Similar Articles

Keywords

  • Therapeutic biologic
  • Container–closure system
  • Protein aggregation
  • Biocompatibility
  • CCS

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2023 PDA Journal of Pharmaceutical Science and Technology ISSN: 1079-7440

Powered by HighWire