Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Case ReportCase Studies

Air-Water Binary Gas Integrity Test for Sterilizing and Virus Filters

Sal Giglia, John Caulmare, David Nhiem and David Porreca
PDA Journal of Pharmaceutical Science and Technology November 2016, 70 (6) 577-590; DOI: https://doi.org/10.5731/pdajpst.2016.006437
Sal Giglia
MilliporeSigma, Bedford, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sal.giglia@emdmillipore.com
John Caulmare
MilliporeSigma, Bedford, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Nhiem
MilliporeSigma, Bedford, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Porreca
MilliporeSigma, Bedford, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Reliability of retention performance is of paramount importance for membrane filters designed for sterile and virus filtration. To achieve dependable retention, an integrity test can be applied to ensure the absence of oversize pores or defects that can compromise the retention capability of the filter. Probably the most commonly applied nondestructive integrity test for membrane filters is the gas-liquid diffusion test, with air and water often used as the gas-liquid pair. However, the sensitivity of the air-water diffusion test is limited by the fact that the diffusive flow rate for an integral membrane can span a range that is large compared to the flow contributed by a defect. A novel nondestructive air-water integrity test for microporous and nanoporous membranes is introduced here that provides improved test sensitivity by measuring the gas composition in addition to gas flow rate. Oxygen permeates through water faster than does nitrogen, so with air as the challenge gas and water as the wetting fluid, the permeate stream will be enriched in oxygen. The permeate oxygen concentration is predictable, accurately measurable, and within a narrow and repeatable range for an integral membrane. A leak through the membrane will result in a deviation from the integral permeate concentration, signaling a defect. Compared to the conventional air-water diffusion test, this air binary gas (i.e., O2 and N2) test in which the permeate gas composition is measured (in addition to the diffusive flow rate) has a superior signal-to-noise ratio and was demonstrated to provide a significantly higher level of retention assurance for both sterilizing grade and virus filters. Because air and water are used as the gas-liquid pair, the air binary gas test also maintains the convenience, safety, and environmentally friendly aspects of the air-water diffusion test.

LAY ABSTRACT: To ensure that sterilizing and virus removal filters are free of defects, an integrity test is often conducted both before and after use of the filters. In the commonly used air-water diffusion integrity test, pressurized air is applied to the water wetted filter and the air flow rate across the filter is measured. A flow rate above a specified limit indicates a leak through the filter. The sensitivity of the test is limited by the level of background noise (integral flow rate) relative to the leak signal (excess flow rate). An enhancement to the air-water diffusion test is introduced here in which the sensitivity of the test can be improved by measuring the composition of the diffused gas. Oxygen permeates through water faster than does nitrogen, so the permeating gas will be enriched in oxygen. Compared to the flow rate, which can span a range of values for integral filters, the integral oxygen concentration is well defined, so even small deviations from the expected concentration signal a leak. Because air and water are used as the test materials, the developed approach achieved higher sensitivity without sacrificing the convenience, safety, and environmentally friendly aspects of the air-water diffusion test.

  • Sterilizing filter
  • Virus filter
  • Integrity test
  • © PDA, Inc. 2016
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 70 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 70, Issue 6
November/December 2016
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Air-Water Binary Gas Integrity Test for Sterilizing and Virus Filters
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Air-Water Binary Gas Integrity Test for Sterilizing and Virus Filters
Sal Giglia, John Caulmare, David Nhiem, David Porreca
PDA Journal of Pharmaceutical Science and Technology Nov 2016, 70 (6) 577-590; DOI: 10.5731/pdajpst.2016.006437

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Air-Water Binary Gas Integrity Test for Sterilizing and Virus Filters
Sal Giglia, John Caulmare, David Nhiem, David Porreca
PDA Journal of Pharmaceutical Science and Technology Nov 2016, 70 (6) 577-590; DOI: 10.5731/pdajpst.2016.006437
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Theoretical Background
    • 3. Materials and Methods
    • 4. Results and Discussion
    • 5. Conclusions
    • Conflict of Interest Declaration
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phase-Incremental Decision Trees for Multi-Phase Feature Selection and Interaction in Biologics Manufacturing
  • Practical Application of Setting up an Annual Contamination Control Strategy (CCS) Assessment
  • A Risk Assessment and Risk Based Approach Review of Pre-use/Post Sterilization Integrity Testing (PUPSIT)
Show more Case Studies

Similar Articles

Keywords

  • Sterilizing Filter
  • Virus Filter
  • Integrity Test

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire