Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities

Fernando A. Garcia and Michael W. Vandiver
PDA Journal of Pharmaceutical Science and Technology May 2017, 71 (3) 189-205; DOI: https://doi.org/10.5731/pdajpst.2016.006882
Fernando A. Garcia
Just Biotherapeutics, Inc.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fernando.garcia@justbiotherapeutics.com
Michael W. Vandiver
Just Biotherapeutics, Inc.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Levine H. L.,
    2. Lilja J. E.,
    3. Stock R.,
    4. Hummel H.,
    5. Jones S. D.
    Efficient, Flexible Facilities for the 21st Century, BioProcess International 2012, 10 (11), 20–30.
    OpenUrlGoogle Scholar
  2. 2.↵
    1. Walsh G.
    Biopharmaceutical Benchmarks 2014. Nature Biotechnol. 2014, 32 (10), 992–1000.
    OpenUrlCrossRefPubMedGoogle Scholar
  3. 3.↵
    1. Farid S. S.,
    2. Pollock J.,
    3. Ho S. V.,
    4. Subramanian G.
    Evaluating the Economic and Operational Feasibility of Continuous Processes for Monoclonal Antibodies. Continuous Processing in Pharmaceutical Manufacturing; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp 433–456.
    Google Scholar
  4. 4.↵
    1. Kelley B.
    Industrialization of mAb Production Technology: The Bioprocessing Industry at a Crossroads. mAbs 2009, 1 (5), 443–452.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  5. 5.↵
    1. Croughan M. S.,
    2. Konstantinov K. B,
    3. Cooney C.
    The Future of Industrial Bioprocessing: Batch or Continuous. Biotechnol. Bioeng. 2015, 112 (4), 648–651.
    OpenUrlGoogle Scholar
  6. 6.↵
    1. Klutz S.,
    2. Magnus J.,
    3. Lobedann M.,
    4. Schwan P.,
    5. Maiser B.,
    6. Niklas J.,
    7. Temming M.,
    8. Schembecker G.
    Developing the biofacility of the future based on continuous processing and single-use technology. J. Biotechnol. 2015, 213, 120–130.
    OpenUrlGoogle Scholar
  7. 7.↵
    1. Xenopoulos A.
    A New, Integrated, Continuous Purification Process Template for Monoclonal Antibodies: Process Modeling and Cost of Goods Studies. J. Biotechnol. 2015, 213, 42–53.
    OpenUrlGoogle Scholar
  8. 8.↵
    1. Adachi K.,
    2. Nishijima Y.
    Continuous Process for Producing Refined Sugar, U.S. Patent 3,781,174, December 25, 1973.
    Google Scholar
  9. 9.↵
    1. Cole E.,
    2. Howard H.
    Continuous Process for Separating Oily Sludges, U.S. Patent 3,696,021, October 3, 1972.
    Google Scholar
  10. 10.↵
    1. Roger Dille D. M.,
    2. McEachern R.
    Continuous Process for the Air Oxidation of Sour Water. U.S. Patent 3,761,409, September 25, 1973.
    Google Scholar
  11. 11.↵
    1. Clincke M.-F.,
    2. Mölleryd C.,
    3. Samani P. K.,
    4. Lindskog E.,
    5. Fäldt E.,
    6. Walsh K.,
    7. Chotteau V.
    Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in Wave BioreactorTM—Part II: Applications for Antibody Production and Cryopreservation. Biotechnol. Prog. 2013, 29 (3) 768–777.
    OpenUrlGoogle Scholar
  12. 12.↵
    1. Anicetti V.
    Biopharmaceutical Processes: A Glance into the 21st Century. BioProcess International 2009, 7 (4).
    Google Scholar
  13. 13.↵
    1. Vogel J. H.,
    2. Nguyen H.,
    3. Giovannini R.,
    4. Ignowski J.,
    5. Garger S.,
    6. Salgotra A.,
    7. Tom J.
    A New Large-Scale Manufacturing Platform for Complex Biopharmaceuticals. Biotechnol. Bioeng. 2012, 109 (12), 3049–3058.
    OpenUrlPubMedGoogle Scholar
  14. 14.↵
    1. Pollock J.,
    2. Ho S. V.,
    3. Farid S. S.
    Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty, Biotechnol. Bioeng. 2013, 110 (1), 206–219.
    OpenUrlPubMedGoogle Scholar
  15. 15.↵
    1. Konstantinov K. B.,
    2. Cooney C. L.
    White Paper on Continuous Bioprocessing. J. Pharm. Sci. 2015, 104 (3), 813–820.
    OpenUrlGoogle Scholar
  16. 16.↵
    1. Warikoo V.,
    2. Godawat R.,
    3. Brower K.,
    4. Jain S.,
    5. Cummings D.,
    6. Simons E.,
    7. Johnson T.,
    8. Walther J.,
    9. Yu M.,
    10. Wright B.,
    11. McLarty J.,
    12. Karey K. P.,
    13. Hwang C.,
    14. Zhou W.,
    15. Riske F.,
    16. Konstantinov K.
    Integrated Continuous Production of Recombinant Therapeutic Proteins. Biotechnol. Bioeng. 2012, 109 (12) 3018–3029.
    OpenUrlPubMedGoogle Scholar
  17. 17.↵
    1. Godawat R.,
    2. Konstantinov K.,
    3. Rohani M.,
    4. Warikoo V.
    End-to-End Integrated Fully Continuous Production of Recombinant Monoclonal Antibodies. J. Biotechnol. 2015, 213, 13–19.
    OpenUrlGoogle Scholar
  18. 18.↵
    1. Chon G. J.,
    2. Zarbis-Papastoitsis H.
    Advances in the Production and Downstream Processing of Antibodies. New Biotechnol. 2011, 28 (5), 458–463.
    OpenUrlGoogle Scholar
  19. 19.↵
    1. Hernandez R.
    Continuous Manufacturing: A Changing Processing Paradigm. BioPharm International 2015, 28 (4), 20–26.
    OpenUrlGoogle Scholar
  20. 20.↵
    1. Jagschies G.
    Where Is Biopharmaceutical Manufacturing Heading? BioPharm International 2008, 21 (10), 72–88.
    OpenUrlGoogle Scholar
  21. 21.↵
    1. Walther J.,
    2. Godawat R.,
    3. Hwang C.,
    4. Abe Y.,
    5. Sinclair A.,
    6. Konstantinov K.
    The Business Impact of an Integrated Continuous Biomanufacturing Platform for Recombinant Protein Production. J. Biotechnol. 2015, 213, 3–12.
    OpenUrlGoogle Scholar
  22. 22.↵
    1. Lakhdar K.,
    2. Zhou Y.,
    3. Savery J.,
    4. Titchener-Hooker N. J.,
    5. Papageorgiou L. G.
    Medium Term Planning of Biopharmaceutical Manufacture Using Mathematical Programming. Biotechnol. Prog. 2005, 21 (5), 1478–1489.
    OpenUrlPubMedGoogle Scholar
  23. 23.↵
    1. Siganporia C. C.,
    2. Ghosh S.,
    3. Daszkowski T.,
    4. Papageorgiou L. G.,
    5. Farid S. S.
    Capacity Planning for Batch and Perfusion Bioprocesses across Multiple Biopharmaceutical Facilities. Biotechnol. Prog. 2014, 30 (3), 594–606.
    OpenUrlGoogle Scholar
  24. 24.↵
    1. Patil R.,
    2. Godawat R.,
    3. Vetter T.,
    4. Waghmare Y.,
    5. Konstantinov K.,
    6. Warikoo V.
    Development of Functionally Closed Downstream Operations for Continuous Biomanufacturing of Recombinant Therapeutic Proteins. Integrated Continuous Biomanufacturing II, November 1–5, 2015.
    Google Scholar
  25. 25.↵
    1. Walther J.,
    2. Shah N.,
    3. Hollenbach M.,
    4. Wang J.,
    5. Yu M.,
    6. Lu J.,
    7. Yang Y.,
    8. Villiger A.,
    9. Konstantinov K.,
    10. Hwang C.
    Delivering Steady-state Product Quality with an Intensified and Integrated Perfusion Cell Culture Process. Integrated Continuous Biomanufacturing II, November 1–5, 2015.
    Google Scholar
  26. 26.↵
    1. Walther J.,
    2. Shah N.,
    3. Hollenbach M.,
    4. Wang J.,
    5. Yu M.,
    6. Lu J.,
    7. Yang Y.,
    8. Konstantinov K.,
    9. Hwang C.
    Overcoming Process Intensification Challenges To Deliver a Manufacturable and Competitive Integrated Continuous Biomanufacturing Platform. Cell Culture Engineering XV, May 8–13, 2016.
    Google Scholar
  27. 27.↵
    1. Koulouris A.,
    2. Calandranis J.,
    3. Petrides D. P.
    Throughput Analysis and Debottlenecking of Integrated Batch Chemical Processes. Computers & Chemical Engineering 2000, 24 (2), 1387–1394.
    OpenUrlGoogle Scholar
  28. 28.↵
    1. Litzen D. B.,
    2. Bravo J. L.
    Uncover Low-cost Debottlenecking Opportunities. Chem. Eng. Prog. 1999, 95 (3), 25.
    OpenUrlGoogle Scholar
  29. 29.↵
    1. Kondili E.,
    2. Pantelides C.,
    3. Sargent R.
    A General Algorithm for Short-term Scheduling of Batch Operations—I. MILP Formulation. Computers & Chemical Engineering 1993, 17 (2) 211–227.
    OpenUrlGoogle Scholar
  30. 30.↵
    1. Toumi A.,
    2. Jurgens C.,
    3. Jungo C.,
    4. Maier B.,
    5. Papavasileiou V.,
    6. Petrides D.
    Design and Optimization of a Large Scale Biopharmaceutical Facility Using Process Simulation and Scheduling Tools. Pharm. Eng. 2010, 30 (2), 1–9.
    OpenUrlGoogle Scholar
  31. 31.↵
    1. Witchey-Lakshmanan L.,
    2. Aranha H.
    How Project Management Fits into the Drug Development Continuum. BioProcess International 2010, May 1. http://www.bioprocessintl.com/business/economics/how-project-management-fits-into-the-drug-development-continuum-279360/
    Google Scholar
  32. 32.↵
    1. Team R. C.
    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, 2013; 2014. http://www.R-project.org/
    Google Scholar
  33. 33.↵
    1. Gurobi I.
    Optimization, Gurobi Optimizer Reference Manual, 2015. http://www.gurobi.com
    Google Scholar
  34. 34.↵
    1. Bisschops M.,
    2. Frick L.,
    3. Fulton S.,
    4. Ransohoff T.
    Single-use, Continuous-countercurrent, Multicolumn Chromatography, BioProcess International 2009, 7 (6) S18–S23.
    OpenUrlGoogle Scholar
  35. 35.↵
    1. Shinkazh O.,
    2. Kanani D.,
    3. Barth M.,
    4. Long M.,
    5. Hussain D.,
    6. Zydney A. L.
    Countercurrent Tangential Chromatography for Large-scale Protein Purification. Biotechnol. Bioeng. 2011, 108 (3), 582–591.
    OpenUrlPubMedGoogle Scholar
  36. 36.↵
    1. Holzer M.,
    2. Osuna-Sanchez H.,
    3. David L.
    Multicolumn Chromatography. BioProcess International 2008, 6 (8), 74–84.
    OpenUrlGoogle Scholar
  37. 37.↵
    1. Bonham-Carter J.,
    2. Shevitz J.
    A Brief History of Perfusion Biomanufacturing. BioProcess International 2011, 9 (9), 24–30.
    OpenUrlGoogle Scholar
  38. 38.↵
    1. Shukla A. A.,
    2. Thömmes J.
    Recent Advances in Large-scale Production of Monoclonal Antibodies and Related Proteins. Trends Biotechnol. 2010, 28 (5) 253–261.
    OpenUrlCrossRefPubMedGoogle Scholar
  39. 39.↵
    1. Pollock J.,
    2. Bolton G.,
    3. Coffman J.,
    4. Ho S. V.,
    5. Bracewell D. G.,
    6. Farid S. S.
    Optimising the Design and Operation of Semi-continuous Affinity Chromatography for Clinical and Commercial Manufacture. J. Chromatogr., A 2013, 1284, 17–27.
    OpenUrlGoogle Scholar
  40. 40.↵
    1. Petrides D.
    Bioprocess Design and Economics; Oxford University Press: Oxford, UK, 2000.
    Google Scholar
  41. 41.↵
    1. Petrides D.,
    2. Carmichael D.,
    3. Siletti C.,
    4. Koulouris A.
    Biopharmaceutical Process Optimization with Simulation and Scheduling Tools. Bioengineering 2014, 1 (4), 154–187.
    OpenUrlGoogle Scholar
  42. 42.↵
    1. Shukla A. A.,
    2. Hubbard B.,
    3. Tressel T.,
    4. Guhan S.,
    5. Low D.
    Downstream Processing of Monoclonal Antibodies—Application of Platform Approaches. J. Chromatogr, B 2007, 848 (1), 28–39.
    OpenUrlCrossRefGoogle Scholar
  43. 43.↵
    1. Koulouris A.,
    2. Siletti C. A.,
    3. Petrides D. P.
    Scheduling Challenges in Biopharmaceutical Manufacturing. Computer Aided Chemical Engineering 2007, 24, 589.
    OpenUrlGoogle Scholar
  44. 44.↵
    1. Langer E. S.,
    2. Rader R. A.
    Continuous Bioprocessing and Perfusion: Wider Adoption Coming as Bioprocessing Matures. BioProcessing Journal 2014, 13 (1), 43–49.
    OpenUrlGoogle Scholar
  45. 45.↵
    1. Acuna J.,
    2. Hewitt M.,
    3. Johnston R.,
    4. Kirkland D.,
    5. Shikibu T.,
    6. Zhang D.
    Modeling Perfusion Processes in Biopharmaceutical Production. BioProcess International 2011, 9 (2), 52–58.
    OpenUrlGoogle Scholar
  46. 46.↵
    1. Reed L. J.,
    2. Berkson J.
    The Application of the Logistic Function to Experimental Data. J. Phys. Chem. 1929, 33 (5), 760–779.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  47. 47.↵
    1. Griliches Z.
    Hybrid Corn: An Exploration in the Economics of Technological Change. Econometrica, Journal of the Econometric Society 1957, 25 (4), 501–522.
    OpenUrlGoogle Scholar
  48. 48.↵
    1. Steury T. D.,
    2. Murray D. L.
    Modeling the Reintroduction of Lynx to the Southern Portion of Its Range. Biological Conservation 2004, 117 (2), 127–141.
    OpenUrlGoogle Scholar
  49. 49.↵
    1. Whitford W. G.
    Single-use Systems as Principal Components in Bioproduction. BioProcess International 2010, 8 (11), 34–42.
    OpenUrlGoogle Scholar
  50. 50.↵
    1. Ashouri P.
    A Dynamic Simulation Framework for Biopharmaceutical Capacity Management, Ph.D. thesis, University College London, 2011.
    Google Scholar
  51. 51.↵
    1. Lim A. C.,
    2. Washbrook J.,
    3. Titchener-Hooker N. J.,
    4. Farid S. S.
    A Computer-aided Approach To Compare the Production Economics of Fed-batch and Perfusion Culture under Uncertainty. Biotechnol. Bioeng. 2006, 93 (4) 687–697.
    OpenUrlPubMedGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 71 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 71, Issue 3
May/June 2017
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities
Fernando A. Garcia, Michael W. Vandiver
PDA Journal of Pharmaceutical Science and Technology May 2017, 71 (3) 189-205; DOI: 10.5731/pdajpst.2016.006882
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Throughput-based Facility Design
    • 3. Modeling Methods and Assumptions
    • 4. Results and Discussion
    • 5. Conclusions and Future Work
    • Conflict of Interest Declaration
    • Acknowledgments
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
Show more Research

Similar Articles

Keywords

  • Continuous Manufacturing
  • Production Scheduling
  • Plant Throughput
  • Process Modeling

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities
Fernando A. Garcia, Michael W. Vandiver
PDA Journal of Pharmaceutical Science and Technology May 2017, 71 (3) 189-205; DOI: 10.5731/pdajpst.2016.006882

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.