Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Real-Time PCR Detection of Burkholderia cepacia in Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination

Luis Jimenez, Theranda Jashari, Jenifer Vasquez, Stephanie Zapata, Joy Bochis, Margarita Kulko, Victoria Ellman, Matthew Gardner and Tina Choe
PDA Journal of Pharmaceutical Science and Technology January 2018, 72 (1) 73-80; DOI: https://doi.org/10.5731/pdajpst.2017.007971
Luis Jimenez
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: papojbmicro@gmail.com
Theranda Jashari
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jenifer Vasquez
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephanie Zapata
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joy Bochis
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margarita Kulko
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victoria Ellman
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew Gardner
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tina Choe
Biology and Horticulture Department, Bergen Community College, Paramus, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Jimenez L.
    Microbial diversity in pharmaceutical product recalls and environments. PDA J. Pharm. Sci. Technol. 2007, 61 (5), 383–399.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Sutton S. W.,
    2. Jimenez L.
    A review of reported recalls involving microbiological control 2004–2011 with emphasis on FDA considerations of “objectionable organisms”. Am. Pharm. Rev. 15, January/February: 42–57, (2012).
  3. 3.↵
    1. Ko S.,
    2. An H. S.,
    3. Bang J. S.,
    4. Park S. W.
    An outbreak of Burkholderia cepacia complex pseudobacteremia associated with intrinsically contaminated commercial 0.5% chlorhexidine solution. Am. J. Infect. Control 2015, 43 (3), 266–268.
    OpenUrl
  4. 4.↵
    1. Singhal T.,
    2. Shah S.,
    3. Naik R.
    Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug. Indian J. Med. Microbiol. 2015, 33 (1), 117–119.
    OpenUrl
  5. 5.↵
    Centers for Disease Control and Prevention. Multistate Outbreak of Burkholderia cepacia Bloodstream Infections Associated with Contaminated Prefilled Saline Flush Syringes. https://www.cdc.gov/hai/outbreaks/b-cepacia-saline-flush/index.html, 2016.
  6. 6.↵
    1. Marquez L.,
    2. Jones K. N.,
    3. Whatley E. M.,
    4. Koy T. H.,
    5. Revell P. A.,
    6. Taylor R. S.,
    7. Brooke Bernhardt M.,
    8. Wagner J. L.,
    9. Dunn J. J.,
    10. LiPuma J. J.,
    11. Cambell J. R.
    An outbreak of Burkholderia cepacia complex infections associated with contaminated liquid docusate. Infect. Control Hosp. Epidemiol. 2017, 38 (5), 567–573.
    OpenUrl
  7. 7.↵
    1. Sandle T.
    Characterizing the Microbiota of a Pharmaceutical Water system-A Metadata Study. SOJ Microbiology & Infectious Diseases 2015, 3, 1–8.
    OpenUrl
  8. 8.↵
    1. Rodley P. D.,
    2. Römling U.,
    3. Tümmler B.
    A Physical Genome Map of the Burkholderia cepacia Type Strain. Mol. Microbiol. 1995, 17 (1), 57–67.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Juhas M.,
    2. Stark M.,
    3. Von Mering C.,
    4. Lumjiaktase P.,
    5. Crook D. W.,
    6. Valvano M. A.,
    7. Eberl L.
    High Confidence Prediction of Essential Genes in Burkholderia cenocepacia. PLoS One 2012, 7 (6), e40064.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Lessie T. G.,
    2. Hendrickson W.,
    3. Manning B. D.,
    4. Devereaux R.
    Genomic Complexity and Plasticity of Burkholderia cepacia. FEMS Microbiol. Lett. 1996, 144 (2-3), 117–128.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Rushton L.,
    2. Sass A.,
    3. Baldwin A.,
    4. Dowson C. G.,
    5. Donoghue D.,
    6. Mahenthiralingam E.
    Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob. Agents Chemother. 2013, 57 (7), 2972–2980.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Torbeck L.,
    2. Raccasi D.,
    3. Guilfoyle D. E.,
    4. Friedman R. L.,
    5. Hussong D.
    Burkholderia cepacia: This Decision Is Overdue. PDA J. Pharm. Sci. Technol. 2011, 65 (5), 535–543.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Jimenez L.,
    2. Kulko E.,
    3. Barron E.,
    4. Flannery T.
    Burkholderia cepacia: A problem That Does Not Go Away! EC Microbiol. 2015, 2.1, 205–210.
    OpenUrl
  14. 14.↵
    1. Jimenez L.,
    2. Smalls S.
    Molecular Detection of Burkholderia cepacia in Toiletry, Cosmetic and Pharmaceutical Raw Materials and Finished Products. J. AOAC Int. 2000, 83 (4), 963–966.
    OpenUrlPubMed
  15. 15.↵
    1. Attia M. A.,
    2. Ali A. E.,
    3. Essam T. M.,
    4. Amin M. A.
    Direct Detection of Burkholderia cepacia in Susceptible Pharmaceutical Products Using Semi-nested PCR. PDA J. Pharm. Sci. Technol. 2016, 70 (2), 99–108.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Jimenez L.,
    2. Kulko E.,
    3. Veloz E.,
    4. Barron E.,
    5. Ibrahim B.,
    6. Flannery T.,
    7. Margolies B.,
    8. Das P.,
    9. Mateo J.,
    10. Aponte T.
    16S rRNA Identification of Microorganisms and Direct Detection of Functional Genes in Waste Material Generated by an In-vessel Rotating Compost System. EC Microbiol. 2015, 1.3, 129–142.
    OpenUrl
  17. 17.↵
    1. Wang Q.,
    2. Garrity G. M.,
    3. Tiedje J. M.,
    4. Cole J. R.
    Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73 (16), 5261–5267.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Altschul S. F.,
    2. Madden T. L.,
    3. Schaffer A. A.,
    4. Zhang J.,
    5. Zhang Z.,
    6. Miller W.,
    7. Lipman D. J.
    Gaped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acid Res. 1997, 25 (17), 3389–3402.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Whitby P. W.,
    2. Dick H. N. L.,
    3. Campbell P. W. III.,
    4. Tullis D. E.,
    5. Matlow A.,
    6. Stull T. L.
    Comparison of Culture and PCR for Detection of Burkholderia cepacia in Sputum Samples of Patients with Cystic Fibrosis. J. Clin. Microbiol. 1998, 36 (6), 1642–1645.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Ahn Y.,
    2. Kim J. M.,
    3. Kweon O.,
    4. Kim S. J.,
    5. Jones R. C.,
    6. Woodling K.,
    7. Gamboa da Costa G.,
    8. LiPuma J. J.,
    9. Hussong D.,
    10. Marasa B. S.,
    11. Cerniglia C. E.
    Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016, 7 (6), e01716–16.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 1
January/February 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Real-Time PCR Detection of Burkholderia cepacia in Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Real-Time PCR Detection of Burkholderia cepacia in Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination
Luis Jimenez, Theranda Jashari, Jenifer Vasquez, Stephanie Zapata, Joy Bochis, Margarita Kulko, Victoria Ellman, Matthew Gardner, Tina Choe
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 73-80; DOI: 10.5731/pdajpst.2017.007971

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Real-Time PCR Detection of Burkholderia cepacia in Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination
Luis Jimenez, Theranda Jashari, Jenifer Vasquez, Stephanie Zapata, Joy Bochis, Margarita Kulko, Victoria Ellman, Matthew Gardner, Tina Choe
PDA Journal of Pharmaceutical Science and Technology Jan 2018, 72 (1) 73-80; DOI: 10.5731/pdajpst.2017.007971
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conflict of Interest Declaration
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Identification of Burkholderia cepacia Complex by PCR: A Simple Way
  • Design, Development, and Validation of a Culture-Independent Nucleic Acid Diagnostics Method for the Rapid Detection and Quantification of the Burkholderia cepacia Complex in Water with an Equivalence to ISO/TS 12869:2019
  • Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire