Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long-Term Stability of Monoclonal Antibodies

Lin M. Luis, Yuzhe Hu, Camellia Zamiri and Alavattam Sreedhara
PDA Journal of Pharmaceutical Science and Technology July 2018, 72 (4) 393-403; DOI: https://doi.org/10.5731/pdajpst.2018.008581
Lin M. Luis
Late Stage Pharmaceutical Development, Genentech Inc., a Member of the Roche Group, South San Francisco, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuzhe Hu
Late Stage Pharmaceutical Development, Genentech Inc., a Member of the Roche Group, South San Francisco, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Camellia Zamiri
Late Stage Pharmaceutical Development, Genentech Inc., a Member of the Roche Group, South San Francisco, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alavattam Sreedhara
Late Stage Pharmaceutical Development, Genentech Inc., a Member of the Roche Group, South San Francisco, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: alavattam.sreedhara@gene.com
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    1. Baertschi S. W.,
    2. Alsante K. M.,
    3. Tønnesen H. H.
    A Critical Assessment of the ICH Guideline on Photostability Testing of New Drug Substances and Products (Q1B): Recommendation for Revision. J. Pharm. Sci. 2010, 99 (7), 2934–2940.
    OpenUrlPubMed
  2. 2.↵
    Q1B I. Stabilty Testing: Photostability testing of new drug substances and products. www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1B/Step4/Q1B_Guideline.pdf1996.
  3. 3.↵
    1. Carvalho T. C.,
    2. Escotet M. L.,
    3. Lin J.,
    4. Sprockel O. L.
    Assessing Impact of Manufacturing and Package Configurations to Photosensitive Compounds. Drug Dev. Ind. Pharm. 2016, 42 (6), 936–944.
    OpenUrl
  4. 4.↵
    1. Templeton A. C.,
    2. Xu H.,
    3. Placek J.,
    4. Reed R. A.
    Implications of Photostability on the Manufacturing, Packaging, Storage, and Testing of Formulated Pharmaceutical Products. Pharm. Technol. 2005, 29 (3), 68–86.
    OpenUrl
  5. 5.↵
    1. Baertschi S. W.,
    2. Clapham D.,
    3. Foti C.,
    4. Jansen P. J.,
    5. Kristensen S.,
    6. Reed R. A.,
    7. Templeton A. C.,
    8. Tønnesen H. H.
    Implications of In-Use Photostability: Proposed Guidance for Photostability Testing and Labeling to Support the Administration of Photosensitive Pharmaceutical Products, Part 1: Drug Products Administered by Injection. J. Pharm. Sci. 2013, 102 (11), 3888–3899.
    OpenUrlPubMed
  6. 6.↵
    1. Pattison D. I.,
    2. Rahmanto A. S.,
    3. Davies M. J.
    Photo-oxidation of Protiens. Photochem. & Photobiol. Sci. 2012, 11 (1), 38–53.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Kerwin B. A.,
    2. Remmele R. L. Jr..
    Protect from Light: Photodegradation and Protein Biologics. J. Pharm. Sci. 2007, 96 (6), 1468–1479.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Dilley K.
    Loss of Tryptophan Associated with Photo-Polymerization and Yellowing of Proteins Exposed to Light over 300nm. Biochem. J. 1973, 133 (4), 821–826.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Mason B. D.,
    2. Schoneich C.,
    3. Kerwin B. A.
    Effect of pH and Light on Aggregation and Conformation of an IgG1 mAb. Mol. Pharm. 2012, 9 (4), 774–790.
    OpenUrlPubMed
  10. 10.↵
    1. Duenas E. T.,
    2. Keck R.,
    3. DeVos A.,
    4. Jones A. J.,
    5. Cleland J. L.
    Comparison between Light Induced and Chemically Induced Oxidation of rhVEGF. Pharm Res. 2001, 18 (10), 1455–1460.
    OpenUrlPubMed
  11. 11.↵
    1. Lam X. M.,
    2. Yang J. Y.,
    3. Cleland J. L.
    Antioxidants for Prevention of Methionine Oxidation in Recombinant Monoclonal Antibody HER2. J. Pharm. Sci. 1997, 86 (11), 1250–1255.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Folzer E.,
    2. Diepold K.,
    3. Bomans K.,
    4. Finkler C.,
    5. Schmidt R.,
    6. Bulau P.,
    7. Huwyler J.,
    8. Mahler H. C.,
    9. Koulov A. V.
    Selective Oxidation of Methionine and Tryptophan Residues in a Therapeutic IgG1 Molecule. J. Pharm. Sci. 2015, 104 (9), 2824–2831.
    OpenUrl
  13. 13.↵
    1. Chumsae C.,
    2. Gaza-Bulseco G.,
    3. Sun J.,
    4. Liu H.
    Comparison of Methionine Oxidation in Thermal Stability and Chemically Stressed Samples of a Fully Human Monoclonal Antibody. J. Chromatogr., B 2007, 850 (1-2), 285–294.
    OpenUrlCrossRef
  14. 14.↵
    1. Kabat E. A.,
    2. Wu T. T.
    Identical V Region Amino Acid Sequences and Segments of Sequences in Antibodies of Different Specificities. Relative Contributions of VH and VL Genes, Minigenes, and Complementarity-Determining Regions to Binding of Antibody-Combining Sites. J. Immunol. 1991, 147 (5), 1709–1719.
    OpenUrlAbstract
  15. 15.↵
    1. Bertolotti-Ciarlet A.,
    2. Wang W.,
    3. Lownes R.,
    4. Pristatsky P.,
    5. Fang Y.,
    6. McKelvey T.,
    7. Li Y.,
    8. Li Y.,
    9. Drummond J.,
    10. Prueksaritanont T.,
    11. Vlasak J.
    Impact of Methionine Oxidation on the Binding of Human IgG1 to Fc Rn and Fc Gamma Receptors. Mol.Immunol. 2009, 46 (8-9), 1878–1882.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Pan H.,
    2. Chen K.,
    3. Chu L.,
    4. Kinderman F.,
    5. Apostol I.,
    6. Huang G.
    Methionine Oxidation in Human IgG2 Fc Decreases Binding Affinities to Protein A and FcRn. Protein Sci. 2009, 18 (2), 424–433.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Stroop S. D.,
    2. Conca D. M.,
    3. Lundgard R. P.,
    4. Renz M. E.,
    5. Peabody L. M.,
    6. Leigh S. D.
    Photosensitizers Form in Histidine Buffer and Mediate the Photodegradation of a Monoclonal Antibody. J. Pharm. Sci. 2011, 100 (12), 5142–5155.
    OpenUrlPubMed
  18. 18.↵
    1. Bane J.,
    2. Mozziconacci O.,
    3. Yi L.,
    4. Wang YJ.,
    5. Sreedhara A.,
    6. Schoneich C.
    Photo-Oxidation of IgG1 and Model Peptides: Detection and Analysis of Triply Oxidized His and Trp Side Chain Cleavage Products. Pharm Res. 2017, 34 (1), 229–242.
    OpenUrl
  19. 19.↵
    1. Li Y.,
    2. Polozova A.,
    3. Gruia F.,
    4. Feng J.
    Characterization of the Degradation Products of a Color-Changed Monoclonal Antibody: Tryptophan-Derived Chromophores. Anal.Chem. 2014, 86 (14), 6850–6857.
    OpenUrl
  20. 20.↵
    1. Bessa J.,
    2. Boeckle S.,
    3. Beck H.,
    4. Buckel T.,
    5. Schlicht S.,
    6. Ebeling M.,
    7. Kiialainen A.,
    8. Koulov A.,
    9. Boll B.,
    10. Weiser T.,
    11. Singer T.,
    12. Rolink A. G.,
    13. Iglesias A.
    The Immunogenicity of Antibody Aggregates in a Novel Transgenic Mouse Model. Pharm Res. 2015, 32 (7), 2344–2359.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Rathore N.,
    2. Rajan R. S.
    Current Perspectives on Stability of Protein Drug Products during Formulation, Fill and Finish Operations. Biotechnol. Prog. 2008, 24 (3), 504–514.
    OpenUrlPubMed
  22. 22.↵
    1. Sreedhara A.,
    2. Yin J.,
    3. Joyce M.,
    4. Lau K.,
    5. Wecksler A. T.,
    6. Deperalta G.,
    7. Yi L.,
    8. John Wang Y.,
    9. Kabakoff B.,
    10. Kishore R. S.
    Effect of Ambient Light on IgG1 Monoclonal Antibodies during Drug Product Processing and Development. Eur. J. Pharm. Biopharm. 2016, 100, 38–46.
    OpenUrlPubMed
  23. 23.↵
    1. Mallaney M.,
    2. Wang S. H.,
    3. Sreedhara A.
    Effect of Ambient Light on Monoclonal Antibody Product Quality during Small-Scale Mammalian Cell Culture Process in Clear Glass Bioreactors. Biotechnol. Prog. 2014, 30 (3), 562–570.
    OpenUrl
  24. 24.↵
    1. Kerwin B. A.
    Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97 (8), 2924–2935.
    OpenUrlCrossRefPubMed
  25. 25.↵
    United States Pharmacopeia. USP 36 NF. Vol. 312013, 2160–2165.
  26. 26.↵
    1. Wan L. S.,
    2. Lee P. F.
    CMC of Polysorbates. J. Pharm. Sci. 1974, 63 (1), 136–137.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Kishore R. S.,
    2. Pappenberger A.,
    3. Dauphin I. B.,
    4. Ross A.,
    5. Buergi B.,
    6. Staempfli A.,
    7. Mahler H. C.
    Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. J. Pharm. Sci. 2011, 100 (2), 721–731.
    OpenUrlPubMed
  28. 28.↵
    1. Ha E.,
    2. Wang W.,
    3. Wang Y. J.
    Peroxide Formation in Polysorbate 80 and Protein Stability. J. Pharm. Sci. 2002, 91 (10), 2252–2264.
    OpenUrlPubMed
  29. 29.↵
    1. Borisov O. V.,
    2. Ji J. A.,
    3. Wang Y. J.
    Oxidative Degradation of Polysorbate Surfactants Studied by Liquid Chromatography–Mass Spectrometry. J. Pharm. Sci. 2015, 104 (3), 1005–1018.
    OpenUrlPubMed
  30. 30.↵
    1. Hewitt D.,
    2. Alvarez M.,
    3. Robinson K.,
    4. Ji J.,
    5. Wang Y. J.,
    6. Kao Y. H.,
    7. Zhang T.
    Mixed-Mode and Reversed-Phase Liquid Chromatography–Tandem Mass Spectrometry Methodologies to Study Composition and Base Hydrolysis of Polysorbate 20 and 80. J. Chromatogr., A 2011, 1218 (15), 2138–2145.
    OpenUrlPubMed
  31. 31.↵
    1. Zhang B.,
    2. Jeong J.,
    3. Burgess B.,
    4. Jazayri M.,
    5. Tang Y.,
    6. Taylor Zhang Y.
    Development of a Rapid RP-UHPLC-MS Method for Analysis of Modifications in Therapeutic Monoclonal Antibodies. J. Chromatogr., B 2016, 1032, 172–181.
    OpenUrlCrossRef
  32. 32.↵
    1. Ji J. A.,
    2. Zhang B.,
    3. Cheng W.,
    4. Wang Y. J.
    Methionine, Tryptophan, and Histidine Oxidation in a Model Protein, PTH: Mechanisms and Stabilization. J. Pharm. Sci. 2009, 98 (12), 4485–4500.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Gao X.,
    2. Ji J. A.,
    3. Veeravalli K.,
    4. Wang Y. J.,
    5. Zhang T.,
    6. Mcgreevy W.,
    7. Zheng K.,
    8. Kelley R. F.,
    9. Laird M. W.,
    10. Liu J.,
    11. Cromwell M.
    Effect of Individual Fc Methionine Oxidation on FcRn Binding: Met252 Oxidation Impairs FcRn Binding More Profoundly than Met428 Oxidation. J. Pharm. Sci. 2015, 104 (2), 368–377.
    OpenUrl
  34. 34.↵
    1. Wang W.,
    2. Vlasak J.,
    3. Li Y.,
    4. Pristatsky P.,
    5. Fang Y.,
    6. Pittman T.,
    7. Roman J.,
    8. Wang Y.,
    9. Prueksaritanont T.,
    10. Ionescu R.
    Impact of Methionine Oxidation in Human IgG1 Fc on Serum Half-Sife of Monoclonal Antibodies. Mol. Immunol. 2011, 48 (6-7), 860–866.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 4
July/August 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long-Term Stability of Monoclonal Antibodies
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long-Term Stability of Monoclonal Antibodies
Lin M. Luis, Yuzhe Hu, Camellia Zamiri, Alavattam Sreedhara
PDA Journal of Pharmaceutical Science and Technology Jul 2018, 72 (4) 393-403; DOI: 10.5731/pdajpst.2018.008581

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long-Term Stability of Monoclonal Antibodies
Lin M. Luis, Yuzhe Hu, Camellia Zamiri, Alavattam Sreedhara
PDA Journal of Pharmaceutical Science and Technology Jul 2018, 72 (4) 393-403; DOI: 10.5731/pdajpst.2018.008581
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials
    • Methods
    • Results and Discussion
    • Conclusions
    • Conflict of Interest Declaration
    • Acknowledgments
    • Reference
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
  • A Proof-of-Concept Study on a Universal Standard Kit to Evaluate the Risks of Inspectors for Their Foundational Ability of Visual Inspection of Injectable Drug Products
  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
Show more Research

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire