Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Conducting Clinical Risk Assessments for Visible Particulate Matter in Parenteral Preparations

John D. Ayres
PDA Journal of Pharmaceutical Science and Technology November 2018, 72 (6) 626-639; DOI: https://doi.org/10.5731/pdajpst.2018.008615
John D. Ayres
Pharma Safety Solutions, LLC, IN, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jayres1790@gmail.com
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Reference

  1. 1.↵
    <1> Injections. U.S. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  2. 2.↵
    1. Langille S. E.
    Particulate Matter in Injectable Drug Products. J. Pharm. Sci. Technol. 2013, 67 (3), 186–200.
    OpenUrl
  3. 3.↵
    1. Bukofzer S.,
    2. Ayres J.,
    3. Chavez A.,
    4. Devera A.,
    5. Miller J.,
    6. Ross D.,
    7. Shabushnig J.,
    8. Vargo S.,
    9. Watson H.,
    10. Watson R.
    Industry Perspectives on the Medical Risk of Visible Particles in Injectable Drug Products. J. Pharm. Sci. Technol. 2015, 69 (1), 123–139.
    OpenUrl
  4. 4.↵
    The International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Q8(R2) Pharmaceutical Development. Geneva, Switzerland, 2009.
  5. 5.↵
    The International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Q9 Quality Risk Management. Geneva, Switzerland, 2006.
  6. 6.↵
    The International Council on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Q10 Pharmaceutical Quality Systems. Geneva, Switzerland, 2008.
  7. 7.↵
    Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs. Code of Federal Regulations, Section 210, Title 21, Vol. 4, 2017.
  8. 8.↵
    Current Good Manufacturing Practice for Finished Pharmaceuticals. Code of Federal Regulations, Section 211, Title 21, Vol. 4, 2017.
  9. 9.↵
    <788> Particulate Matter in Injections. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  10. 10.↵
    1. Shtulman A.
    Scienceblind: Why Our Intuitive Theories About the World are so Often Wrong; Basic Books: New York, 2017 pp. 4–5.
  11. 11.↵
    1. Madsen R. E.,
    2. Cherris R. T.,
    3. Shabushnig J. G.,
    4. Hunt D. G.
    Visible Particulates in Injections—A History and a Proposal to Revise USP General Chapter Injections <1>. Pharmacopeial Forum 2009, 35 (5), 1383–1387.
    OpenUrl
  12. 12.↵
    Drug Alert. Class 4 Medicines Defect Information. MHRA. Pemetrexed 25 mg/ml Concentrate for solution for infusion. Ref: MDR 81-05/16. 16 June 2016.
  13. 13.↵
    1. Shabushnig J. G,
    2. Melchore J. A.,
    3. Geiger M.,
    4. Chrai S.,
    5. Gerger M. E.
    A Proposed Working Standard for Validation of Particulate Inspection in Sterile Solutions. PDA Annual Meeting. Philadelphia, PA. 1995.
  14. 14.↵
    <790> Visual Inspection of Injections. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  15. 15.↵
    1. Knapp J. Z.,
    2. Kushner H. K.
    Generalized Methodology for Evaluation of Parenteral Inspection Procedures. J. Pharm. Sci. Technol. 1980, 34 (1), 14–61.
    OpenUrl
  16. 16.↵
    <787> Subvisible Particulate Matter in Therapeutic Protein Injections. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  17. 17.↵
    <789> Particulate Matter in Ophthalmic Solutions. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  18. 18.↵
    Identification and Classification of Nonconformities in Molded and Tubular Glass Containers for Pharmaceutical Manufacturing: Covering Ampoules, Bottles, Cartridges, Syringes and Vials. Technical Report No. 43 (Revised 2013). Parenteral Drug Association. Bethesda, MD. 2013.
  19. 19.↵
    1. Shabushnig J.
    Particulate Matter and Visual Inspection: Industry Trends 2015. Parenteral Drug Association. Bethesda, MD. 2015.
  20. 20.↵
    1. Aldrich S. D.,
    2. Cherris R. T.,
    3. Shabushnig J. G.
    Visual Inspection and Particulate Control; DHI Publishing, LLC: River Grove, 2016.
  21. 21.↵
    <1790> Visual Inspection of Injections. Pharmacopeial Convention: Rockville, MD. 39-NF35 S2. Official beginning May 1, 2017.
  22. 22.↵
    1. Beuchat L. R.
    Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. J. Food Prot. 1983, 46 (2), 135–141.
    OpenUrl
  23. 23.↵
    1. Dempsey G.,
    2. Webber G. S.
    Hazards of Particle Injection. The Pharmaceutical J. 1983, 63–64.
  24. 24.↵
    1. Larsen S.T.,
    2. Lund R.M.,
    3. Nielsen G.D.,
    4. Thygesen P.,
    5. Poulsen O.M.
    Adjuvant Effect of di-n-butyl-, di-n-octyl-, di-iso-nonyl-and di-isodecyl phthalate in a Subcutaneous Injection Model Using BALB/c Mice. 2002, Pharmacol. Toxicol. 91 (5), 264–72.
    OpenUrlPubMed
  25. 25.↵
    1. Bailey L. O.,
    2. Lippiatt S.,
    3. Biancanello F. S.,
    4. Ridder S. D.,
    5. Washburn N. R.
    The Quantification of Cellular Viability and Inflammatory Response to Stainless Steel Alloys. Biomaterials. 2005, 26 (26), 5296–5302.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Greenblatt D. J.,
    2. Allen M. D.
    Intramuscular Injection-Site Complications. JAMA. 1978, 240 (6), 542–44.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.↵
    1. Allcutt D. A.,
    2. Lort D.,
    3. McCollum C. N.
    Final Inline Filtration for Intravenous Infusions: A Prospective Hospital Study. Br. J. Surg. 1983, 70 (2), 111–113.
    OpenUrlPubMedWeb of Science
  28. 28.↵
    1. Puntis J. W.,
    2. Wilkins K. M.,
    3. Ball P. A.,
    4. Rushton D. I.,
    5. Booth I. W.
    Hazards of Parenteral Treatment: Do Particles Count? Arch. Dis. Child. 1992, 67 (12), 1475–1477.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Liu J. F.,
    2. Su Z. K.,
    3. Ding W. X.
    Quantitation of Particulate Microemboli during Cardiopulmonary Bypass: Experimental and Clinical Studies. Ann. Thorac. Surg. 1992, 54 (6), 1196–1202.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. Walpot H.,
    2. Franke R. P.,
    3. Burchard W. G.,
    4. Agternkamp C.,
    5. Müller F. G.,
    6. Mittermayer C.,
    7. Kalff G.
    Particulate Contamination of Infusion Solutions and Drug Additives in the Framework of Long-Term Intensive Therapy. An Animal Model (Article in German). Anaesthesist 1989, 38 (11), 617–621.
    OpenUrlPubMed
  31. 31.↵
    1. Jones M. L.,
    2. Warren J. S.
    Monocyte Chemoattractant Protein 1 in a Rat Model of Pulmonary Granulomatosis. Lab. Invest. 1992, 66 (4), 498–503.
    OpenUrlPubMedWeb of Science
  32. 32.↵
    1. Bautista A. P.,
    2. Schuler A.,
    3. Spolarics Z.,
    4. Spitzer J. J.
    In Vivo Latex Phagocytosis Primes the Kupffer Cells and Hepatic Neutrophils to Generate Superoxide Anion. J. Leukoc. Biol. 1992, 51 (1), 39–45.
    OpenUrlPubMed
  33. 33.↵
    1. Puel V.,
    2. Caudry M.,
    3. Le Métayer P.,
    4. Baste J. C.,
    5. Midy D.,
    6. Marsault C.,
    7. Demeaux H.,
    8. Maire J. P.
    Superior Vena Cava Thrombosis Related to Catheter Malposition in Cancer Chemotherapy Given Through Implanted Ports. Cancer 1993, 72 (7), 2248–2252.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    McCrone Atlas of Microscopic Particles. http://www.mccroneatlas.com (accessed December 28, 2017).
  35. 35.↵
    1. Wang W.,
    2. Singh S. K.,
    3. Li N.,
    4. Toler M. R.,
    5. King K. R.,
    6. Nema S.,
    7. et al
    . Immunogenicity of protein aggregates Aggregatest—Concerns and realities. Intl. J. Pharmaceutics. 2012, 431 (1–2), 1–11.
    OpenUrl
  36. 36.↵
    Guidance for Industry: Immunogenicity Assessment for Therapeutic Protein Products. US Food and Drug Administration. Silver Spring, MD. August 2014.
  37. 37.↵
    Guideline on Immunogenicity Assessment of Biotechnology-Derived Therapeutic Proteins. (Draft) EMEA/CHMP/BMWP/14327/2006 Rev. 1. September 24, 2015.
  38. 38.↵
    1. Rosenberg A. S.,
    2. Verthelyi D.,
    3. Cherney B. W.
    Managing Uncertainty: A Perspective on Risk Pertaining to Product Quality Attributes as They Bear on Immunogenicity of Therapeutic Proteins. J. Pharm. Sci. 2012, 101 (10), 3560–3567.
    OpenUrlPubMed
  39. 39.↵
    1. Hill S. E.,
    2. Heldman L. S.,
    3. Goo E. D.,
    4. Whippo P. E.,
    5. Perkinson J. C.
    Fatal Microvascular Pulmonary Emboli from Precipitation of a Total Nutrient Admixture Solution. 1996, J. Parenter. Enteral. Nutr. 20 (1), 81–87.
    OpenUrlCrossRefPubMed
  40. 40.↵
    Intravenous Ceftriaxone and Calcium Drug–Drug Interaction. FDA Drug Safety Newsletter. 2009, 2 (3), 24–25.
    OpenUrl
  41. 41.↵
    1. Lehr A. H.,
    2. Brunner J.,
    3. Rangoonwala R.,
    4. Kirkpatrick C. J.
    Particulate Matter Contamination of Intravenous Antibiotics Aggravates Loss of Functional Capillary Density in Postischemic Striated Muscle. Am. J. Respir. Crit. Care. Med. 2002, 165 (4), 514–520.
    OpenUrlCrossRefPubMedWeb of Science
  42. 42.↵
    1. Nahri L. O.,
    2. Covari V.,
    3. Ripple D. C.,
    4. Afonina N.,
    5. Cecchini I.,
    6. DeFelippis M. R.,
    7. Garidel P.,
    8. Herre A.,
    9. Koulov A. V.,
    10. Lubiniecki T.,
    11. et al
    . Subvisible (2–100 μm) Particle Analysis during Biotherapeutic Drug Development: Part 1, Considerations and Strategies. J. Pharm. Sci. 2015, 104 (6), 1899–1908.
    OpenUrl
  43. 43.↵
    1. Covari V.,
    2. Nahri L. O.,
    3. Spitznagel T. M.,
    4. Afonina N.,
    5. Cao S.,
    6. Cash P.,
    7. Cecchini I.,
    8. DeFelippis M. R.,
    9. Garidel P.,
    10. Herre A.,
    11. et al
    . Subvisible (2–100 μm) Particle Analysis during Biotherapeutic Drug Development: Part 2, Experience With The Application of Subvisible Particle Analysis. Biologicals. 2015, 43 (6), 457–473.
    OpenUrl
  44. 44.↵
    1. Gerhardt A.,
    2. Nguyen B. H.,
    3. Lewus R.,
    4. Carpenter J. F.,
    5. Randolph T. W.
    Effect of Siliconization Method on Particle Generation in a Monoclonal Antibody Formulation in Pre-Filled Syringes. J. Pharm. Sci. 2015, 104 (5), 1601–1609.
    OpenUrl
  45. 45.↵
    1. Eglovitch J.
    FDA Taking Closer Look at Manufacturers' Visual Testing Programs While USP Would Set New Limits for Particles. The Gold Sheet. October 2013.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 72 (6)
PDA Journal of Pharmaceutical Science and Technology
Vol. 72, Issue 6
November/December 2018
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Conducting Clinical Risk Assessments for Visible Particulate Matter in Parenteral Preparations
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
16 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Conducting Clinical Risk Assessments for Visible Particulate Matter in Parenteral Preparations
John D. Ayres
PDA Journal of Pharmaceutical Science and Technology Nov 2018, 72 (6) 626-639; DOI: 10.5731/pdajpst.2018.008615

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Conducting Clinical Risk Assessments for Visible Particulate Matter in Parenteral Preparations
John D. Ayres
PDA Journal of Pharmaceutical Science and Technology Nov 2018, 72 (6) 626-639; DOI: 10.5731/pdajpst.2018.008615
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Background
    • Characterizing the Clinical Risk
    • Assessing the Clinical Risk
    • Sources of Particles
    • Particle-Related Attributes
    • Patient-Related Factors
    • Conducting the Assessment
    • Differentiating Clinical Risk Assessment and Product Risk Acceptance for Visible Particles
    • Subvisible Particles
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • Footnotes
    • Reference
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Comparing visual inspection methods for parenteral products in hospital pharmacy: between reliability, cost, and operator formation considerations
  • Google Scholar

More in this TOC Section

  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies—A Multiple Company Collaboration—Post ICH Q5A(R2) Review
  • A Risk Based Approach for Pre-Use/Post-Sterilization Integrity Test Simulation During Bacterial Retention Testing as Part of the Process Specific Filter Validation of Sterilizing Grade Filters
  • Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
Show more Commentary

Similar Articles

Keywords

  • Particles
  • Injectables
  • Clinical Risk Assessment
  • visual inspection
  • Patient Safety

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire