Abstract
Trumenba (MenB-FHbp; bivalent rLP2086), the first meningococcal serogroup B vaccine approved in the United States and subsequently approved in Europe, Canada, and Australia, is well-characterized. Pfizer devised a control strategy approach by using a simplified control strategy wheel for Trumenba based on International Council for Harmonisation (ICH) Q8 (R2), Q9, Q10, and Q11 guidelines, which provide complementary guidance on pharmaceutical development, quality risk management, quality systems, and development and manufacture of drug substances, respectively. These guidelines ensure product quality using a scientific and risk-based approach. Trumenba contains two factor H binding proteins (FHbps), one from each of the two FHbp subfamilies (A and B), adsorbed onto aluminum phosphate. Trumenba manufacturing processes are complicated by the recombinant protein expression of Subfamily A and B proteins and the nature of the drug product (suspension in syringes); the latter also introduces challenges in controlling product critical quality attributes during the development process. In such complex systems, the control strategy is critical to ensuring consistent desired product quality; it also supports the regulatory requirement of continued improvement through continuous process verification and aids regulatory filing. This article describes Pfizer's approach toward robust control strategy development, built on product and process understanding, and links control strategy to regulatory document sections and flow of controls. Specifically, an approach is presented on product quality attribute criticality determination based on safety and efficacy and on an understanding of process parameter criticality. This was achieved by studying the impact of the approach on product quality attributes to define process parameter and in-process controls. This approach is further explained through Trumenba case studies, highlighting specific quality attributes and the associated controls implemented, and provides a holistic view of controls employed for both drug substance and drug product.
- © PDA, Inc. 2020
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.