Abstract
A drug delivery system is designed to administer a therapeutic dose according to its label claim. Upon delivery of a parenteral drug product, the volume remaining inside the container that cannot be extracted at the end of drug administration is called the hold-up volume (HUV) and is primarily considered product wastage. To meet the label claim, every drug product container is filled with a slight excess volume. For early-stage products in clinical phase, for which material availability is often a limitation, excess volume in drug product containers has to be determined experimentally using several grams of product. In such scenarios, established models that can predict HUV in primary drug product containers would be valuable for product development. The objective of this study was to determine HUV with 95% confidence intervals across various container closures and drug delivery systems by using aqueous PEG 400 solution mimicking the viscosity of biologic drug products. ISO 2R, 6R, and 10R vials and single-use hypodermic syringes attached to a Luer lock needle (25 gauge, 1½ in.) were used to mimic parenteral drug product container and delivery systems for determination of HUV. Glass prefilled syringes in 1 mL and 2.25 mL configurations were also used to determine HUV with 95% confidence intervals. A linear regression model was developed for determination of HUV as a function of viscosity and as a function of container closure and a needle-based delivery system. This model predicting HUV was confirmed by using monoclonal antibodies of varying formulations and viscosities for container closure and delivery systems tested in this study. The model provided here can be used to determine HUV for a particular container closure for a drug solution with known viscosity that can subsequently be used to evaluate fill volume specifications and label claim for a dosage form.
- Container closure system
- Biologic drug product
- Hold-up volume
- Fill volume specification
- Label claim
- Dosage form
- Drug delivery system
- Vials
- Prefilled syringe
- © PDA, Inc. 2020
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.