Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Case ReportCase Study

Environmental and Personnel Monitoring Programs—A Risk-Based Case Study of Cutibacterium acnes

Edward C. Tidswel and Kenneth Boone
PDA Journal of Pharmaceutical Science and Technology July 2020, 74 (4) 408-422; DOI: https://doi.org/10.5731/pdajpst.2019.010975
Edward C. Tidswel
1Merck, West Point, PA 19486; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Edward.tidswell@merck.com
Kenneth Boone
2The Maurice R. Hilleman Center for Vaccine Manufacturing, Merck, Durham, NC 27712.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Tidswell E. C.,
    2. Sandle T.
    Microbiological Test Data—Assuring Data Integrity. PDA J. Pharm. Sci. Technol. 2018, 72 (1), 2–14.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Akers J. E.
    Science Based Aseptic Processing. PDA J. Pharm. Sci. Technol. 2002, 56 (6), 283–290.
    OpenUrlFREE Full Text
  3. 3.↵
    1. Turnbaugh P. J.,
    2. Ley R. E.,
    3. Hamady M.,
    4. Fraser-Liggett C. M.,
    5. Knight R.,
    6. Gordon J. I.
    The Human Microbiome Project. Nature 2007, 449 (7164), 804–810.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. ElRakaiby M.,
    2. Dutilh B. E.,
    3. Rizkallah M. R.,
    4. Boleij A.,
    5. Cole J. N.,
    6. Aziz R. K.
    Pharmacomicrobiomics: The Impact of Human Microbiome Variations on Systems Pharmacology and Personalized Therapeutics. OMICS 2014, 18 (7), 402–414.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Chen Y. E.,
    2. Tsao H.
    The Skin Microbiome: Current Perspectives and Future Challenges. J. Am. Acad. Dermatol. 2013, 69 (1), 143–155.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Kong H. H.,
    2. Segre J. A.
    Skin Microbiome: Looking Back to Move Forward. J. Invest. Dermatol. 2012, 132 (3), 933–939.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. O'Neil A. M.,
    2. Gallo R. L.
    Host-Microbiome Interactions and Recent Progress into Understanding the Biology of Acne Vulgaris. Microbiome 2018, 6 (1), 177.
    OpenUrl
  8. 8.↵
    1. Orla-Jensen S.
    Die Hauptlinien der Natürlichen Bakteriensystems. Zentralbl. Bakteriol., Parasitenkd., Infektionskrankh. Hyg., Abt. 2 1909, 2, 305–346.
    OpenUrl
  9. 9.↵
    1. Douglas H. C.,
    2. Gunter S. E.
    The Taxonomic Position of Corynebacterium acnes. J. Bacteriol. 1946, 52 (1), 15–23.
    OpenUrlFREE Full Text
  10. 10.↵
    1. Scholz C. F. P.,
    2. Kilian M.
    The Natural History of Cutaneous Propionibacteria, and Reclassification of Selected Species within the Genus Propionibacterium to the Proposed Novel Genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2016, 66 (11), 4422–4432.
    OpenUrlCrossRef
  11. 11.↵
    1. Cove J. H.,
    2. Holland K. T.,
    3. Cunliffe W. J.
    Effects of Oxygen Concentration on Biomass Production, Maximum Specific Growth Rate and Extracellular Enzyme Production by Three Species of Cutaneous Propionibacteria Grown in Continuous Culture. J. Gen. Microbiol. 1983, 129 (11), 3327–3334.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Csukas Z.,
    2. Banizs B.,
    3. Rozgonyi F.
    Studies on the Cytotoxic Effects of Propionibacterium acnes Strains Isolated from Cornea. Microb. Pathog. 2004, 36 (3), 171–174.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Johnson J. L.,
    2. Cummins C. S.
    Cell Wall Composition and Deoxyribonucleic Acid Similarities among the Anaerobic Coryneforms, Classical Propionibacteria, and Strains of Arachnia propionica. J. Bacteriol. 1972, 109 (3), 1047–1066.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Webster G. F.,
    2. Cummins C. S.
    Use of Bacteriophage Typing to Distinguish Propionibacterium acnes Types I and II. J. Clin. Microbiol. 1978, 7 (1), 84–90.
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. Kishishita M.,
    2. Ushijima T.,
    3. Ozaki Y.,
    4. Ito Y.
    Biotyping of Propionibacterium acnes Isolated from Normal Human Facial Skin. Appl. Environ. Microbiol. 1979, 38 (4), 585–589.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. McDowell A.,
    2. Perry A. L.,
    3. Lambert P. A.,
    4. Patrick S.
    A New Phylogenetic Group of Propionibacterium acnes. J. Med. Microbiol. 2008, 57 (2), 218–224.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Steiner B.,
    2. Romero-Steiner S.,
    3. Cruce D.,
    4. George R.
    Cloning and Sequencing of the Hyaluronate Lyase Gene from Propionibacterium acnes. Can. J. Microbiol. 1997, 43 (4), 315–321.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Brüggemann H.,
    2. Henne A.,
    3. Hoster F.,
    4. Liesegang H.,
    5. Wiezer A.,
    6. Strittmatter A.,
    7. Hujer S.,
    8. Dürre P.,
    9. Gottschalk G.
    The Complete Genome Sequence of Propionibacterium acnes, a Commensal of Human Skin. Science 2004, 305 (5684), 671–673.
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. Gribbon E. M.,
    2. Cunliffe W. J.,
    3. Holland K. T.
    Interaction of Propionibacterium acnes with Skin Lipids in Vitro. J. Gen. Microbiol. 1993, 139 (8), 1745–1751.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Drake D. R.,
    2. Brogden K. A.,
    3. Dawson D. V.,
    4. Wertz P. W.
    Thematic Review Series: Skin Lipids. Antimicrobial Lipids at the Skin Surface. J. Lipid Res. 2008, 49 (1), 4–11.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Fujimura S.,
    2. Nakamura T.
    Purification and Properties of a Bacteriocin-like Substance (Acnecin) of Oral Propionibacterium acnes. Antimicrob. Agents Chemother. 1978, 14 (6), 893–898.
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. Paul G. E.,
    2. Booth S. J.
    Properties and Characteristics of a Bacteriocin-like Substance Produced by Propionibacterium acnes Isolated from Dental Plaque. Can. J. Microbiol. 1988, 34 (12), 1344–1347.
    OpenUrlPubMed
  23. 23.↵
    1. Wooley J. C.,
    2. Godzik A.,
    3. Friedberg I.
    A Primer on Metagenomics. PLoS Comput. Biol. 2010, 6 (2), e1000667.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Lederberg J.,
    2. McCray A. T.
    Ome Sweet ‘Omics—a Genealogical Treasury of Words Genealogical Treasury of Words. Scientist 2001, 15 (7), 8.
    OpenUrl
  25. 25.↵
    1. Proctor L. M.
    The National Institutes of Health Human Microbiome Project. Semin. Fetal Neonatal Med. 2016, 21 (6), 368–372.
    OpenUrl
  26. 26.↵
    1. Sender R.,
    2. Fuchs S.,
    3. Milo R.
    Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14 (8), e1002533.
    OpenUrlCrossRefPubMed
  27. 27.↵
    Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486 (7402), 207–214.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.↵
    1. Cundell A.; M.
    Microbial Ecology of the Human Skin. Microb. Ecol. 2018, 76 (1), 113–120.
    OpenUrl
  29. 29.↵
    1. Bouffard G. G.,
    2. Blakesley R. W.,
    3. Murray P. R.,
    4. Green E. D.,
    5. Turner M. L.,
    6. Segre J. A.
    1. Grice E. A.,
    2. Kong H. H.,
    3. Conlan S.,
    4. Deming C. B.,
    5. Davis J.,
    6. Young A. C.
    ; NISC Comparative Sequencing Program; Bouffard G. G., Blakesley R. W., Murray P. R., Green E. D., Turner M. L., Segre J. A. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324 (5931), 1190–1192.
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. Lu G. W.,
    2. Valiveti S.,
    3. Spence J.,
    4. Zhuang C.,
    5. Robosky L.,
    6. Wade K.,
    7. Love A.,
    8. Hu L.-Y.,
    9. Pole D.,
    10. Mollan M.
    Comparison of Artificial Sebum with Human and Hamster Sebum Samples. Int. J. Pharm. 2009, 367 (1–2), 37–43.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Linfante A.,
    2. Allawh R. M.,
    3. Allen H. B.
    The Role of Propionibacterium acnes Biofilm in Acne Vulgaris. J. Clin. Exp. Dermatol. Res. 2017, 9 (1), 1–4.
    OpenUrl
  32. 32.↵
    1. Kuehnast T.,
    2. Cakar F.,
    3. Weinhäupl T.,
    4. Pilz A.,
    5. Selak S.,
    6. Schmidt M. A.,
    7. Rüter C.,
    8. Schild S.
    Comparative Analyses of Biofilm Formation among Different Cutibacterium acnes Isolates. Int. J. Med. Microbiol. 2018, 308 (8), 1027–1035.
    OpenUrl
  33. 33.↵
    1. Platsidaki E.,
    2. Dessinioti C.
    Recent Advances in Understanding Propionibacterium acnes (Cutibacterium acnes) in Acne. F1000Research 2018, 7, 1–12. F1000 Faculty Rev-1953.
    OpenUrl
  34. 34.↵
    1. Claesen J.,
    2. Spagnolo J. B.,
    3. Ramos S. F.,
    4. Kurita K. L.,
    5. Byrd A. L.,
    6. Aksenov A. A.,
    7. Melnik A. V.,
    8. Wong W. R.,
    9. Wang S.,
    10. Hernandez R. D.,
    11. Donia M. S.,
    12. Dorrestein P. C.,
    13. Kong H. H.,
    14. Segre J. A.,
    15. Linington R. G.,
    16. Fischbach M. A.,
    17. Lemon K. P.
    Cutibacterium acnes Antibiotic Production Shapes Niche Competition in the Human Skin Microbiome. 2019, bioRxiv 594010. bioRxiv Preprint Server for Biology. https://doi.org/10.1101/594010 (accessed May 31, 2020).
  35. 35.↵
    1. Hall J. B.,
    2. Cong Z.,
    3. Imamura-Kawasawa Y.,
    4. Kidd B. A.,
    5. Dudley J. T.,
    6. Thiboutot D. M.,
    7. Nelson A. M.
    Isolation and Identification of the Follicular Microbiome: Implications for Acne Research. J. Invest. Dermatol. 2018, 138 (9), 2033–2040.
    OpenUrl
  36. 36.↵
    1. Achermann Y.,
    2. Sahin F.,
    3. Schwyzer H. K.,
    4. Kolling C.,
    5. Wüst J.,
    6. Vogt M.
    Characteristics and Outcome of 16 Periprosthetic Shoulder Joint Infections. Infection 2013, 41 (3), 613–620.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Achermann Y.,
    2. Goldstein E. J. C.,
    3. Coenye T.,
    4. Shirtliff M. E.
    Propionibacterium acnes: From Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clin. Microbiol. Rev. 2014, 27 (3), 419–440.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Aubin G. G.,
    2. Portillo M. E.,
    3. Trampuz A.,
    4. Corvec S.
    Propionibacterium acnes, an Emerging Pathogen: From Acne to Implant-Infections, from Phylotype to Resistance. Méd. Mal. Infect. 2014, 44 (6), 241–250.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Figa R.,
    2. Muñetón D.,
    3. Gómez L.,
    4. Matamala A.,
    5. Lung M.,
    6. Cuchi E.,
    7. Corona P. S.
    Periprosthetic Joint Infection by Propionibacterium acnes: Clinical Differences between Monomicrobial versus Polymicrobial Infection. Anaerobe 2017, 44, 143–149.
    OpenUrl
  40. 40.↵
    1. Andersson T.,
    2. Ertürk Bergdahl G.,
    3. Saleh K.,
    4. Magnúsdóttir H.,
    5. Stødkilde K.,
    6. Andersen C. B. F.,
    7. Lundqvist K.,
    8. Jensen A.,
    9. Brüggemann H.,
    10. Lood R.
    Common Skin Bacteria Protect Their Host from Oxidative Stress through Secreted Antioxidant RoxP. Sci. Rep. 2019, 9 (1), 1–10. 3596.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Butler-Wu S. M.,
    2. Burns E. M.,
    3. Pottinger P. S.,
    4. Magaret A. S.,
    5. Rakeman J. L.,
    6. Matsen F. A. III.,
    7. Cookson B. T.
    Optimization of Periprosthetic Culture for Diagnosis of Propionibacterium acnes Prosthetic Joint Infection. J. Clin. Microbiol. 2011, 49 (7), 2490–2495.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Schlecht S.,
    2. Freudenberg M. A.,
    3. Galanos C.
    Culture and Biological Activity of Propionibacterium acnes. Infection 1997, 25 (4), 247–249.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Rieber H.,
    2. Frontzek A.,
    3. Jerosch J.,
    4. Alefeld M.,
    5. Strohecker T.,
    6. Ulatowski M.,
    7. Morawietz T.,
    8. Hinsenkamp S.,
    9. Bell A.,
    10. Kücükköylü D.,
    11. Frommelt L.
    Periprosthetic Joint Infection Caused by Anaerobes. Retrospective Analysis Reveals No Need for Prolonged Cultivation Time If Sensitive Supplemented Growth Media Are Used. Anaerobe 2018, 50, 12–18.
    OpenUrl
  44. 44.↵
    1. Bossard D. A.,
    2. Ledergerber B.,
    3. Zingg P. O.,
    4. Gerber C.,
    5. Zinkernagel A. S.,
    6. Zbinden R.,
    7. Achermann Y.
    Optimal Length of Cultivation Time for Isolation of Propionibacterium acnes in Suspected Bone and Joint Infections Is More than 7 Days. J. Clin. Microbiol. 2016, 54 (12), 3043–3049.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Abdulmassih R.,
    2. Makadia J.,
    3. Como J.,
    4. Paulson M.,
    5. Min Z.,
    6. Bhanot N.
    Propionibacterium acnes: Time-to-Positivity in Standard Bacterial Culture from Different Anatomical Sites. J. Clin. Med. Res. 2016, 8 (12), 916–918.
    OpenUrl
  46. 46.↵
    1. Hanson C. W.,
    2. Martin W. J.
    Evaluation of Enrichment, Storage, and Age of Blood Agar Medium in Relation to Its Ability to Support Growth of Anaerobic Bacteria. J. Clin. Microbiol. 1976, 4 (5), 394–399.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Rosenow E. C.
    Studies on Elective Localization: Focal Infection with Special Reference to Oral Sepsis. J. Dent. Res. 1919, 1 (3), 205–267.
    OpenUrlCrossRef
  48. 48.↵
    1. Haden R. L.
    Elective Localization in the Eye of Bacteria from Infected Teeth. Arch. Int. Med. 1923, 32 (6), 828–849.
    OpenUrlCrossRefWeb of Science
  49. 49.↵
    1. Hyde W. A.
    Origin of Bacteria in the Clean Room and Their Growth Requirements. PDA J. Pharm. Sci. Technol. 1998, 52 (4), 154–158.
    OpenUrlFREE Full Text
  50. 50.↵
    1. Viraraghavan R.,
    2. Jantausch B.,
    3. Campos J.
    Late-Onset Central Nervous System Shunt Infections with Propionibacterium acnes: Diagnosis and Management. Clin. Pediatr. (Philadelphia) 2004, 43 (4), 393–397.
    OpenUrlCrossRefPubMed
  51. 51.
    1. Holmes S.,
    2. Pena Diaz A. M.,
    3. Athwal G. S.,
    4. Faber K. J.,
    5. O'Gorman D. B.
    Neer Award 2017: A Rapid Method for Detecting Propionibacterium acnes in Surgical Biopsy Specimens from the Shoulder. J. Shoulder Elbow Surg. 2017, 26 (2), 179–185.
    OpenUrlCrossRef
  52. 52.
    1. Damgaard C.,
    2. Magnussen K.,
    3. Enevold C.,
    4. Nilsson M.,
    5. Tolker-Nielsen T.,
    6. Holmstrup P.,
    7. Nielsen C. H.
    Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations. PLoS One 2015, 10 (3), e0120826.
    OpenUrlCrossRef
  53. 53.
    1. Gannesen A. V.,
    2. Borrel V.,
    3. Lefeuvre L.,
    4. Netrusov A. I.,
    5. Plakunov V. K.,
    6. Feuilloley M. G. J.
    Effect of Two Cosmetic Compounds on the Growth, Biofilm Formation Activity, and Surface Properties of Acneic Strains of Cutibacterium acnes and Staphylococcus aureus. MicrobiologyOpen 2019, 8 (3), e00659.
    OpenUrl
  54. 54.
    1. Lutz M.-F.,
    2. Berthelot P.,
    3. Fresard A.,
    4. Cazorla C.,
    5. Carricajo A.,
    6. Vautrin A.-C.,
    7. Fessy M.-H.,
    8. Lucht F.
    Arthroplastic and Osteosynthetic Infections Due to Propionibacterium acnes: A Retrospective Study of 52 Cases, 1995–2002. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24 (11), 739–744.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.
    1. Sethi P. M.,
    2. Sabetta J. R.,
    3. Stuek S. J.,
    4. Horine S. V.,
    5. Vadasdi K. B.,
    6. Greene R. T.,
    7. Cunningham J. G.,
    8. Miller S. R.
    Presence of Propionibacterium acnes in Primary Shoulder Arthroscopy: Results of Aspiration and Tissue Cultures. J. Shoulder Elbow Surg. 2015, 24 (5), 796–803.
    OpenUrlCrossRefPubMed
  56. 56.
    1. Schäfer P.,
    2. Fink B.,
    3. Sandow D.,
    4. Margull A.,
    5. Berger I.,
    6. Frommelt L.
    Prolonged Bacterial Culture to Identify Late Periprosthetic Joint Infection: A Promising Strategy. Clin. Infect. Dis. 2008, 47 (11), 1403–1409.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Kvich L.,
    2. Jensen P. Ø.,
    3. Justesen U. S.,
    4. Bjarnsholt T.
    Incidence of Propionibacterium acnes in Initially Culture-Negative Thioglycollate Broths—a Prospective Cohort Study at a Danish Universtity Hospital. Clin. Microbiol. Infect. 2016, 22 (11), 941–945.
    OpenUrl
  58. 58.↵
    1. Whitman W. B.,
    2. Coleman D. C.,
    3. Wiebe W. J.
    Prokaryotes: The Unseen Majority. Proc. Natl. Acad. Sci. U.S.A. 1998, 95 (12), 6578–6583.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Moissl-Eichinger C.,
    2. Auerbach A. K.,
    3. Probst A. J.,
    4. Mahnert A.,
    5. Tom L.,
    6. Piceno Y.,
    7. Andersen G. L.,
    8. Venkateswaran K.,
    9. Rettberg P.,
    10. Barczyk S.,
    11. Pukall R.,
    12. Berg G.
    Quo Vadis? Microbial Profiling Revealed Strong Effects of Cleanroom Maintenance and Routes of Contamination in Indoor Environments. Sci. Rep. 2015, 5, 9156.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Stephens B.
    What Have we Learned about the Microbiomes of Indoor Environments? mSystems 2016, 1 (4), e00083.
    OpenUrl
  61. 61.
    1. Rhodes J.,
    2. Feasby J.,
    3. Goddard W.,
    4. Beaney A.,
    5. Baker M.
    The Use of a Single Growth Medium for Environmental Monitoring of Pharmacy Aseptic Units Using Tryptone Soya Agar with 1% Glucose. Eur. J. Parent. Pharm. Sci. 2016, 21 (2), 50–55.
    OpenUrl
  62. 62.
    1. Guinet R.,
    2. Berthoumieu N.,
    3. Dutot P.,
    4. Triquet J.,
    5. Ratajczak M.,
    6. Thibaudon M.,
    7. Bechaud P.,
    8. Arliaud C.,
    9. Miclet E.,
    10. Giordano F.,
    11. Larcon M.,
    12. Arthaud C.
    Multicenter Study on Incubation Conditions for Environmental Monitoring and Aseptic Process Simulation. PDA J. Pharm. Sci. Technol. 2017, 71 (1), 43–49.
    OpenUrlAbstract/FREE Full Text
  63. 63.
    1. Nagarkar P. P.,
    2. Ravetkar S. D.,
    3. Watve M. G.
    Oligophilic Bacteria as Tools to Monitor Aseptic Production Units. Appl. Environ. Microbiol. 2001, 67 (3), 1371–1374.
    OpenUrlAbstract/FREE Full Text
  64. 64.
    1. Gordon O.,
    2. Berchtold M.,
    3. Staerk A.,
    4. Roesti D.
    Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring. PDA J. Pharm. Sci. Technol. 2014, 68 (5), 394–406.
    OpenUrlAbstract/FREE Full Text
  65. 65.
    1. Sandle T.
    Examination of the Order of Incubation for the Recovery of Bacteria and Fungi from Pharmaceutical Grade Cleanrooms. Int. J. Pharm. Compd. 2014, 18 (3), 242–247.
    OpenUrl
  66. 66.
    1. Gebala B.,
    2. Sandle T.
    Comparison of Different Fungal Agar for the Environmental Monitoring of Pharmaceutical-Grade Cleanrooms. PDA J. Pharm. Sci. Technol. 2013, 67 (6), 621–633.
    OpenUrlAbstract/FREE Full Text
  67. 67.↵
    1. Evans C. A.,
    2. Mattern K. L.
    The Aerobic Growth of Propionibacterium acnes in Primary Cultures from Skin. J. Invest. Dermatol. 1979, 72 (2), 103–106.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Tršan M.,
    2. Seme K.,
    3. Srčič S.
    The Environmental Monitoring in Hospital Pharmacy Cleanroom and Microbiota Catalogue Preparation. Saudi Pharm. J. 2019, 27 (4), 455–462.
    OpenUrl
  69. 69.↵
    1. Sandle T.
    A Review of Cleanroom Microflora: Types, Trends, and Patterns. PDA J. Pharm. Sci. Technol. 2011, 65 (4), 392–403.
    OpenUrlAbstract/FREE Full Text
  70. 70.↵
    1. Tally F. P.,
    2. Goldin B. R.,
    3. Jacobus N. V.,
    4. Gorbach S. L.
    Superoxide Dismutase in Anaerobic Bacteria of Clinical Significance. Infect. Immun. 1977, 16 (1), 20–25.
    OpenUrlAbstract/FREE Full Text
  71. 71.↵
    1. Gregory E. M.,
    2. Moore W. E.,
    3. Holdeman L. V.
    Superoxide Dismutase in Anaerobes: Survey. Appl. Environ. Microbiol. 1978, 35 (5), 988–991.
    OpenUrlAbstract/FREE Full Text
  72. 72.↵
    1. Rolfe R. D.,
    2. Hentges D. J.,
    3. Campbell B. J.,
    4. Barrett J. T.
    Factors Related to the Oxygen Tolerance of Anaerobic Bacteria. Appl. Environ. Microbiol. 1978, 36 (2), 306–313.
    OpenUrlAbstract/FREE Full Text
  73. 73.↵
    1. Sandle T.,
    2. Tidswell E. C.
    1. Tidswell E. C.,
    2. Bennett S. E.
    Sterility. In Aseptic and Sterile Processing: Control, Compliance and Future Trends. Sandle T., Tidswell E. C., Eds.; DHI Publishing: River Grove, IL, 2017.
  74. 74.↵
    1. Gallo R. L.
    Human Skin is the Largest Epithelial Surface for Interaction with Microbes. J. Invest. Dermatol. 2017, 137 (6), 1213–1214.
    OpenUrlCrossRef
  75. 75.↵
    1. Leyden J. L.,
    2. McGinley K. J.,
    3. Nordstrom K. M.,
    4. Webster G. F.
    Skin Microflora. J. Invest. Dermatol. 1987, 88 (3 Suppl.), 65s–72s.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Kong H. H.,
    2. Segre J. A.
    1. Oh J.,
    2. Byrd A. L.,
    3. Park M.
    ; NISC Comparative Sequencing Program; Kong H. H., Segre J. A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165 (4), 854–866.
    OpenUrlCrossRef
  77. 77.↵
    1. Ljungqvist B.,
    2. Reinmüller B.
    Cleanroom Clothing Systems. People as a Contamination Source; DHI Publishing LLC: River Grove, IL, 2004.
  78. 78.↵
    1. Ljungqvist B.,
    2. Reinmüller B.
    Practical Safety Ventilation in Pharmaceutical and Biotech Cleanrooms; DHI Publishing LLC: River Grove, IL, 2006.
  79. 79.↵
    1. Ljungqvist B.,
    2. Reinmüller B.
    Modern Cleanroom Clothing Systems: People as a Contamination Source. PDA J. Pharm. Sci. Technol. 2003, 57 (2), 114–125.
    OpenUrlAbstract/FREE Full Text
  80. 80.↵
    1. Whyte W.
    Cleanroom Design, 2nd ed.; Whyte W. Ed.; John Wiley & Sons, Chichester, U.K., 1999.
  81. 81.↵
    1. Mollah A. H.,
    2. Long M.,
    3. Baseman H. S.
    1. Tidswell E. C.
    Aseptic Processing: Two. In Risk Management Applications in Pharmaceutical and Biopharmaceutical Manufacturing; Mollah A. H., Long M., Baseman H. S., Eds.; John Wiley & Sons Inc: Hoboken, New Jersey, 2013.
  82. 82.↵
    1. Zhao P.,
    2. Chan P.-T.,
    3. Gao Y.,
    4. Lai H.-W.,
    5. Zhang T.,
    6. Li Y.
    Physical Factors That Affect Microbial Transfer during Surface Touch. Build. Env. 2019, 158, 28–39.
    OpenUrl
  83. 83.↵
    1. Fierer N.,
    2. Lauber C. L.,
    3. Zhou N.,
    4. McDonald D.,
    5. Costello E. K.,
    6. Knight R.
    Forensic Identification Using Skin Bacterial Communities. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (14), 6477–6481.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Tidswell E. C.,
    2. McGarvey B.
    Quantitative Risk Modeling in Aseptic Manufacture. PDA J. Pharm. Sci. Technol. 2006, 60 (5), 267–283.
    OpenUrlAbstract/FREE Full Text
  85. 85.↵
    1. Whyte W.,
    2. Eaton T.
    Microbiological Contamination Models for Use in Risk Assessment during Pharmaceutical Production. Eur. J. Parent. Pharm. Sci. 2004, 9 (1), 11–15.
    OpenUrl
  86. 86.↵
    1. Whyte W.,
    2. Eaton T.
    Microbial Risk Assessment in Pharmaceutical Cleanrooms. Eur. J. Parent. Pharm. Sci. 2004, 9 (1), 16–23.
    OpenUrl
  87. 87.↵
    1. Akers J.,
    2. Agalloco J.
    Risk Analysis for Aseptic Processing: The Akers-Agalloco Method. Pharm. Technol. 2005, 29 (11), 74–88.
    OpenUrl
  88. 88.↵
    1. Yang S.,
    2. Li L.,
    3. Lu M.,
    4. Chen T.,
    5. Han L.,
    6. Lian G.
    Determination of Solute Diffusion Properties in Artificial Sebum. J. Pharm. Sci. 2019, 108 (9), 3003–3008.
    OpenUrl
  89. 89.↵
    1. Tang Y.-W.,
    2. Sussman M.,
    3. Liu D.,
    4. Poxton I.,
    5. Schwartzman J.
    1. McDowell A.,
    2. Nagy I.
    Propionibacteria and Disease. In Molecular Medical Microbiology, 2nd ed.; Tang Y.-W., Sussman M., Liu D., Poxton I., Schwartzman J., Eds.; Academic Press: London, 2015; Chapter 46, pp 837–858.
  90. 90.↵
    1. Petersen R. L. W.,
    2. Scholz C. F. P.,
    3. Jensen A.,
    4. Brüggemann H.,
    5. Lomholt H. B.
    Propionibacterium acnes Phylogenetic Type III is Associated with Progressive Macular Hypomelanosis. Eur. J. Microbiol. Immunol. 2017, 7 (1), 37–45.
    OpenUrlCrossRef
  91. 91.↵
    1. McDowell A.,
    2. Nagy I.,
    3. Magyari M.,
    4. Barnard E.,
    5. Patrick S.
    The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution. PLoS One 2013, 8 (9), e70897.
    OpenUrlCrossRefPubMed
  92. 92.↵
    1. Lomholt H. B.,
    2. Kilian M.
    Population Genetic Analysis of Propionibacterium acnes Identifies a Subpopulation and Epidemic Clones Associated with Acne. PLoS One 2010, 5 (8), e12277.
    OpenUrlCrossRefPubMed
  93. 93.↵
    1. Cunningham M.,
    2. Cash J. D.
    Bacterial Contamination of Platelet Concentrates Stored at 20°C. J. Clin. Pathol. 1973, 26 (6), 401–404.
    OpenUrlAbstract/FREE Full Text
  94. 94.↵
    1. Jacobs M. R.,
    2. Good C. E.,
    3. Lazarus H. M.,
    4. Yomtovian R. A.
    Relationship between Bacterial Load, Species Virulence, and Transfusion Reaction with Transfusion of Bacterially Contaminated Platelets. Clin. Infect. Dis. 2008, 46 (8), 1214–1220.
    OpenUrlCrossRefPubMed
  95. 95.↵
    1. Pietersz R. N.,
    2. Reesink H. W.,
    3. Panzer S.,
    4. Oknaian S.,
    5. Kuperman S.,
    6. Gabriel C.,
    7. Rapaille A.,
    8. Lambermont M.,
    9. Deneys V.,
    10. Sondag D.,
    11. Ramírez‐Arcos S.,
    12. Goldman M.,
    13. Delage G.,
    14. Bernier F.,
    15. Germain M.,
    16. Vuk T.,
    17. Georgsen J.,
    18. Morel P.,
    19. Naegelen C.,
    20. Bardiaux L.,
    21. Cazenave J.-P.,
    22. Dreier J.,
    23. Vollmer T.,
    24. Knabbe C.,
    25. Seifried E.,
    26. Hourfar K.,
    27. Lin C. K.,
    28. Spreafico M.,
    29. Raffaele L.,
    30. Berzuini A.,
    31. Prati D.,
    32. Satake M.,
    33. de Korte D.,
    34. van der Meer P. F.,
    35. Kerkhoffs J. L.,
    36. Blanco L.,
    37. Kjeldsen-Kragh J.,
    38. Svard‐Nilsson A.,
    39. McDonald C. P.,
    40. Symonds I.,
    41. Moule R.,
    42. Brailsford S.,
    43. Yomtovian R.,
    44. Jacobs M. R.
    Bacterial Contamination in Platelet Concentrates. Vox Sang. 2014, 106 (3), 256–283.
    OpenUrl
  96. 96.↵
    1. Honohan Á.,
    2. Olthuis H.,
    3. Bernards A. T.,
    4. Van Beckhoven J. M.,
    5. Brand A.
    Microbial Contamination of Cord Blood Stem Cells. Vox Sang. 2002, 82 (1), 32–38.
    OpenUrlCrossRefPubMed
  97. 97.↵
    1. Thyer J.,
    2. Perkowska,
    3. Guse Z.,
    4. Ismay S. L.,
    5. Keller A. J.,
    6. Chan H. T.,
    7. Dennington P. M.,
    8. Bell B.,
    9. Kotsiou G.,
    10. Pink J. M.
    Bacterial Testing of Platelets—Has It Prevented Transfusion‐Transmitted Bacterial Infections in Australia? Vox Sang. 2018, 113 (1), 13–20.
    OpenUrl
  98. 98.↵
    1. Levy J. H.,
    2. Neal M. D.,
    3. Herman J. H.
    Bacterial Contamination of Platelets for Transfusion: Strategies for Prevention. Crit. Care 2018, 22 (1), 271.
    OpenUrl
  99. 99.↵
    1. Brecher M. E.,
    2. Hay S. N.
    Bacterial Contamination of Blood Components. Clin. Microbiol. Rev. 2005, 18 (1), 195–204.
    OpenUrlAbstract/FREE Full Text
  100. 100.↵
    1. England M. R.,
    2. Stock F.,
    3. Gebo J. E. T.,
    4. Frank K. M.,
    5. Lau A. F.
    Comprehensive Evaluation of Compendial USP<71>, BacT/Alert Dual-T, and Bactec FX for Detection of Product Sterility Testing Contaminants. J. Clin. Microbiol. 2019, 57 (2), 1–10.
    OpenUrlCrossRef
  101. 101.↵
    1. Ghosh A.,
    2. Mehta A.,
    3. Khan A. M.
    Metagenomic Analysis and Its Applications. In Encyclopedia of Bioinformatics and Computational Biology; Academic Press, 2019; Vol. 3, pp 184–193.
    OpenUrl
  102. 102.↵
    1. Hendrickson R.,
    2. Urbaniak C.,
    3. Malli Mohan G. B.,
    4. Aronson H.,
    5. Venkateswaran K.
    Final Report of the “Ratio of Spore to Viable Organisms” Task: A Case Study of the JPL—SAF Cleanroom; JPL Publication JPL PUB 17-3; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, 2017.
  103. 103.↵
    1. Favero M. S.,
    2. Puleo J. R.,
    3. Marshall J. H.,
    4. Oxborrow G. S.
    Comparative Levels and Types of Microbial Contamination Detected in Industrial Clean Rooms. Appl. Environ. Microbiol. 1966, 14 (4), 539–551.
    OpenUrlAbstract/FREE Full Text
  104. 104.↵
    1. Miller M. J.,
    2. Lindsay H.,
    3. Valverde-Ventura R.,
    4. O'Conner M. J.
    Evaluation of the BioVigilant® IMD-A™, a Novel Optical Spectroscopy Technology for the Continuous and Real-Time Environmental Monitoring of Viable and Nonviable Particles. Part I. Review of the Technology and Comparative Studies with Conventional Methods. PDA J. Pharm. Sci. Technol. 2009, 63 (3), 245–258.
    OpenUrlAbstract/FREE Full Text
  105. 105.↵
    1. Weber J.,
    2. Hauschild J.,
    3. Ijzerman-Boon P.,
    4. Forng R.-Y.,
    5. Horsch J.,
    6. Yan L.,
    7. Prasad A.,
    8. Henry R.,
    9. Claassen M.,
    10. Villari P.,
    11. Shereefa S.,
    12. Wyatt J.,
    13. Bolden J. S.,
    14. Pycke J.-T.,
    15. Dassu D.
    Continuous Microbiological Environmental Monitoring for Process Understanding and Reduced Interventions in Aseptic Manufacturing. PDA J. Pharm. Sci. Technol. 2019, 73 (2), 121–134.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 74 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 74, Issue 4
July/August 2020
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Environmental and Personnel Monitoring Programs—A Risk-Based Case Study of Cutibacterium acnes
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Environmental and Personnel Monitoring Programs—A Risk-Based Case Study of Cutibacterium acnes
Edward C. Tidswel, Kenneth Boone
PDA Journal of Pharmaceutical Science and Technology Jul 2020, 74 (4) 408-422; DOI: 10.5731/pdajpst.2019.010975

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Environmental and Personnel Monitoring Programs—A Risk-Based Case Study of Cutibacterium acnes
Edward C. Tidswel, Kenneth Boone
PDA Journal of Pharmaceutical Science and Technology Jul 2020, 74 (4) 408-422; DOI: 10.5731/pdajpst.2019.010975
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • The Microorganism Cutibacterium acnes
    • Cutibacterium acnes and the Skin
    • Culturing Cutibacterium acnes
    • Adequacy of Industry Standard Monitoring and Sterility Testing For Cutibacterium acnes
    • FDA Form 483s concerning Cutibacterium acnes
    • Patient Risk from Cutibacterium acnes
    • Conclusion
    • Conflict of Interest Declaration
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Reducing the risk of non-sterility of aseptic handling in hospital pharmacies, part C: applying risk assessment and risk control in practice
  • Reducing the risk of non-sterility of aseptic handling in hospital pharmacies, part C: applying risk assessment and risk control in practice
  • Google Scholar

More in this TOC Section

  • Visual Inspection of Topical Ophthalmic Formulations Packaged in Opaque and Semi-Transparent Containers: Working Towards Alignment with USP<790> Visible Particulates in Injections
  • Determining Maximum Allowable Rubber Stopper Displacement for Container Closure Integrity (CCI)
  • Risk-Based Approach for Analytical Comparability and Comparability Protocols
Show more Case Study

Similar Articles

Keywords

  • Microbiological risk
  • Cutibacterium acnes
  • Culture medium
  • Incubation conditions
  • Monitoring
  • Controls

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire