Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Artificial Intelligence Algorithm Qualification: A Quality by Design Approach to Apply Artificial Intelligence in Pharma

Toni Manzano, Cristina Fernàndez, Toni Ruiz and Hugo Richard
PDA Journal of Pharmaceutical Science and Technology January 2021, 75 (1) 100-118; DOI: https://doi.org/10.5731/pdajpst.2019.011338
Toni Manzano
1Bigfinite, Corcega 301, Barcelona 08008, Spain; and
2AI Xavier University, 3800 Victory Pkwy, Cincinnati, OH 45207.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: toni.manzano@aizon.ai
Cristina Fernàndez
1Bigfinite, Corcega 301, Barcelona 08008, Spain; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toni Ruiz
1Bigfinite, Corcega 301, Barcelona 08008, Spain; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hugo Richard
1Bigfinite, Corcega 301, Barcelona 08008, Spain; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Huang M.-H.,
    2. Rust R. T.
    Artificial Intelligence in Service. J. Serv. Res. 2018, 21 (2), 155–172.
    OpenUrl
  2. 2.↵
    1. Penrose R.,
    2. Mermin N. D.
    The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Am. J. Phys. 1990, 58 (12), 1214–1216.
    OpenUrl
  3. 3.↵
    1. Naimat A.
    The New Artificial Intelligence Market. O’Reilly Media, Inc., 2016.
  4. 4.↵
    1. Kaur N.,
    2. Sood S. K.
    Cognitive Decision Making in Smart Industry. Comput. Ind. 2015, 74, 151–161.
    OpenUrl
  5. 5.↵
    Data Science: Opportunities to Transform Chemical Sciences and Engineering: Proceedings of a Workshop—In Brief. The National Academies Press: Washington, DC, 2018.
  6. 6.↵
    1. Price W. N.
    Making Do in Making Drugs: Innovation Policy and Pharmaceutical Manufacturing. Boston College Law Review 2014, 55 (2).
  7. 7.↵
    , Quality Guideline Q8(R2): Pharmaceutical Development, Step 4. ICH: Geneva, 2009.
  8. 8.↵
    1. Herwig C.,
    2. Wölbeling C.,
    3. Zimmer T.
    A Holistic Approach to Production Control: From Industry 4.0 to Pharma 4.0. Pharm. Eng. 2017.
  9. 9.↵
    , Quality Guideline Q9: Quality Risk Management, Step 4. ICH: Geneva, 2005.
  10. 10.↵
    , ICH Topic Q2 (R1): Validation of Analytical Procedures: Text and Methodology. EMA: London, 1995.
  11. 11.↵
    1. Peterson J. J.,
    2. Snee R. D.,
    3. McAllister P. R.,
    4. Schofield T. L.,
    5. Carella A. J.
    Statistics in Pharmaceutical Development and Manufacturing. J. Qual. Technol. 2009, 41 (2), 111–134.
    OpenUrl
  12. 12.↵
    1. Zhang G.,
    2. Hu M. Y.,
    3. Patuwo B. E.,
    4. Indro D. C.
    Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-Validation Analysis. Eur. J. Oper. Res. 1999, 116 (1), 16–32.
    OpenUrlCrossRefWeb of Science
  13. 13.↵
    Review of Particle Physics. Phys. Rev. D 2018, 98 (3), 030001.
  14. 14.↵
    1. Diamantidis N.,
    2. Karlis D.,
    3. Giakoumakis E.
    Unsupervised Stratification of Cross-Validation for Accuracy Estimation. Artif. Intell. 2000, 116 (1), 1–16.
    OpenUrl
  15. 15.↵
    1. Hastie T.,
    2. Tibshirani R.,
    3. Friedman J.
    The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed.; Springer, 2008.
  16. 16.↵
    1. Smith R.,
    2. Ventura D.,
    3. Prince J. T.
    Novel Algorithms and the Benefits of Comparative Validation. Bioinformatics 2013, 29 (12), 1583–1585.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Saurwein F.,
    2. Just N.,
    3. Latzer M.
    Governance of Algorithms: Options and limitations. Info 2015, 17 (6), 35–49.
    OpenUrl
  18. 18.↵
    1. Chu L. P.
    Data Science for Modern Manufacturing. O’Reilly Media, Inc., 2016.
  19. 19.↵
    1. Kent A.,
    2. Williams J.
    Encyclopedia of Computer Science and Technology: Volume 25—Supplement 10: Applications of Artificial Intelligence to Agriculture and Natural Resource Management to Transaction Machine Architectures; Kent A., Williams J., Eds.; Encyclopedia of Computer Science Series; Taylor & Francis, 1991.
  20. 20.↵
    1. Chow T. S.
    Testing Software Design Modeled by Finite-State Machines. IEEE Trans. Softw. Eng. 1978, 4 (3), 178–187.
    OpenUrlCrossRef
  21. 21.↵
    1. Gao J.,
    2. Tao C.,
    3. Jie D.,
    4. Lu S.
    What Is AI Software Testing? and Why. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco East Bay, CA, April 4–9, 2019, 27–2709.
  22. 22.↵
    , Good Practices for Data Management and Integrity in Regulated GMP/GDP Environments. PIC/S: Geneva, 2018.
  23. 23.↵
    1. Witjas-Paalberends E. R.,
    2. van Laarhoven L. P. M.,
    3. van de Burgwal L. H. M.,
    4. Feilzer J.,
    5. de Swart J.,
    6. Claassen E.,
    7. Jansen W. T. M.
    Challenges and Best Practices for Big Data-Driven Healthcare Innovations Conducted by Profit–Non-Profit Partnerships—A Quantitative Prioritization. Int. J. Healthc. Manag. 2018, 11 (3), 171–181.
    OpenUrl
  24. 24.↵
    1. Barlow M.
    Artificial Intelligence Across Industries; O’Reilly Media, 2017.
  25. 25.↵
    , Annex 5: Guidance on Good Data and Record Management Practices. WHO, 2016.
  26. 26.↵
    , ‘GXP' Data Integrity Guidance and Definitions, Rev. 1. MHRA: London, 2018.
  27. 27.↵
    , European Pharmacopoeia (Ph. Eur.), 9th edition, Council of Europe: Strasbourg, France, 2017.
  28. 28.↵
    1. Menzies T.
    Verification and Validation and Artificial Intelligence. Foundations Johns Hopkins U. Applied Physics Lab Laurel 2002, 02.
  29. 29.↵
    , Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)—Discussion Paper and Request for Feedback. FDA, 2019.
  30. 30.↵
    , HMA-EMA Joint Big Data Taskforce. Summary Report; EMA/105321/2019. EMA: London, 2019.
  31. 31.↵
    1. Guinée J. B.,
    2. Lindeijer E.
    Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Guinée J. B., Lindeijer E., Eds.; Eco-Efficiency in Industry and Science Vol. 7; Springer Science & Business Media, 2002.
  32. 32.↵
    1. Muteki K.,
    2. Swaminathan V.,
    3. Sekulic S. S.,
    4. Reid G. L.
    De-Risking Pharmaceutical Tablet Manufacture through Process Understanding, Latent Variable Modeling, and Optimization Technologies. AAPS PharmSciTech 2011, 12 (4), 1324–1334.
    OpenUrlPubMed
  33. 33.↵
    1. Lourenço V.,
    2. Lochmann D.,
    3. Reich G.,
    4. Menezes J. C.,
    5. Herdling T.,
    6. Schewitz J.
    A Quality by Design Study Applied to an Industrial Pharmaceutical Fluid Bed Granulation. Eur. J. Pharm. Biopharm. 2012, 81 (2), 438–447.
    OpenUrlPubMed
  34. 34.↵
    1. Frankish K.,
    2. Ramsey W. M.
    The Cambridge Handbook of Artificial Intelligence; Frankish K., Ramsey W. M., Eds.; Cambridge University Press, 2014.
  35. 35.↵
    1. Moor J.
    Workshop Report 4. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AAAI, 2006.
  36. 36.↵
    1. Markarian J.
    Modernizing Pharma Manufacturing. Pharm Technol. 2018, 42 (4), 20–25.
    OpenUrl
  37. 37.↵
    1. Mockute R.,
    2. Desai S.,
    3. Perera S.,
    4. Assuncao B.,
    5. Danysz K.,
    6. Tetarenko N.,
    7. Gaddam D.,
    8. Abatemarco D.,
    9. Widdowson M.,
    10. Beauchamp S.,
    11. Cicerello S.,
    12. Mingle E.
    Artificial Intelligence within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation. Pharm. Med. 2019, 33 (2), 109–120.
    OpenUrl
  38. 38.↵
    Case study: Artificial Intelligence and Machine Learning: Revolutionising Drug Development; IMED Annual Review, 2017.
  39. 39.↵
    1. Ferreira A. P.,
    2. Tobyn M.
    Multivariate Analysis in the Pharmaceutical Industry: Enabling Process Understanding and Improvement in the PAT and QbD Era. Pharm. Dev.Technol. 2015, 20 (5), 513–527.
    OpenUrl
  40. 40.↵
    Analysis Techniques for System Reliability—Procedures for Failure Mode and Effects Analysis (FMEA); IEC 60812:2006(E); IEC: Geneva, 2006.
  41. 41.↵
    , USP 29—NF 24, USP: Rockville, MD, 2006.
  42. 42.↵
    1. McCarthy J.
    What is Artificial Intelligence? 2007. Formal Reasoning Group of Stanford University Web site. http://www-formal.stanford.edu/jmc/whatisai/ (accessed February 3, 2020).
  43. 43.↵
    , Quality Guideline Q12: Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management, Step 2. ICH: Geneva, 2017.
  44. 44.↵
    1. Rowley A.,
    2. Turpin R.,
    3. Walton S.
    The Emergence of Artificial Intelligence and Machine Learning Algorithms in Healthcare: Recommendations to Support Governance and Regulation. Position paper, BSI, 2019.
  45. 45.↵
    1. Norton M.,
    2. Karczub D.
    Fundamentals of Noise and Vibration Analysis for Engineers; Cambridge University Press, 2003.
  46. 46.↵
    1. Liu F. T.,
    2. Ting K. M.,
    3. Zhou Z.-H.
    Isolation Forest. In 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, December 15–19, 2008; IEEE, 2008; 413–422.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (1)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 1
January/February 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence Algorithm Qualification: A Quality by Design Approach to Apply Artificial Intelligence in Pharma
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
13 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Artificial Intelligence Algorithm Qualification: A Quality by Design Approach to Apply Artificial Intelligence in Pharma
Toni Manzano, Cristina Fernàndez, Toni Ruiz, Hugo Richard
PDA Journal of Pharmaceutical Science and Technology Jan 2021, 75 (1) 100-118; DOI: 10.5731/pdajpst.2019.011338

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Artificial Intelligence Algorithm Qualification: A Quality by Design Approach to Apply Artificial Intelligence in Pharma
Toni Manzano, Cristina Fernàndez, Toni Ruiz, Hugo Richard
PDA Journal of Pharmaceutical Science and Technology Jan 2021, 75 (1) 100-118; DOI: 10.5731/pdajpst.2019.011338
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Background
    • 3. Research Objectives
    • 4. Research Methodology
    • 5. Experiment
    • 6. Results
    • 7. Discussion
    • Conflict of Interest Declaration
    • Acknowledgments
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • CPV of the Future: AI-Powered Continued Process Verification for Bioreactor Processes
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • Qualification
  • Artificial Intelligence
  • Algorithms
  • Quality by Design
  • QbD
  • Design of Space
  • Pharmaceutical industry
  • 4th Industrial Revolution
  • Smart industry
  • Pharma 4.0
  • Quality

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire