Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Models for Counts and Particle Size Distributions of Subvisible Particle Data

Jorge Quiroz, Elsa M. Vazquez, Jeffrey Wilson, Anita Dabbara and Jason K. Cheung
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 213-229; DOI: https://doi.org/10.5731/pdajpst.2020.011510
Jorge Quiroz
1Research CMC Statistics, Merck & Co., Inc., Kenilworth, NJ;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jorge.quiroz@merck.com
Elsa M. Vazquez
2Arizona State University, Tempe, AZ; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey Wilson
2Arizona State University, Tempe, AZ; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anita Dabbara
3Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason K. Cheung
3Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    U.S. Food and Drug Administration. Guidance for Industry: Immunogenicity Assessment for Therapeutic Protein Products. FDA Web site, 2014. https://www.fda.gov/media//85017/ (accessed November 7, 2019).
    Google Scholar
  2. 2.↵
    1. Das T. K.
    Protein Particulate Detection Issues in Biotherapeutics Development—Current Status. AAPS PharmSciTech 2012, 13 (2), 732–746.
    OpenUrlCrossRefPubMedGoogle Scholar
  3. 3.↵
    1. Narhi L.
    Characterization and Biological Relevance of Protein Aggregates and Other Particles 100–200,000 nm in Size (Sub-Micron and Sub-Visible). CASSS Web site, 2019. https://cdn.ymaws.com/www.casss.org/resource/resmgr/hos_speaker_slides/2019_narhi_linda_slides.pdf (accessed November 7, 2019).
    Google Scholar
  4. 4.↵
    1. Collett D.
    Modelling Binary Data, 2nd ed.; CRC Press, Chapman and Hall: London, 2013.
    Google Scholar
  5. 5.↵
    1. Stroup W. W.
    Generalized Linear Mixed Models; CRC Press, Chapman and Hall: Boca Raton, Florida, 2013.
    Google Scholar
  6. 6.↵
    1. Nath N.,
    2. McNeal E.,
    3. Obenhuber D.,
    4. Pillari B.,
    5. Shelton L.,
    6. Stevens-Riley M.,
    7. Sweeney N.
    Particulate Contaminants of Intravenous Medication and the Limits Set by USP General Chapter <788>. Pharmacopeial Forum 2004, 30 (6), 2272–2280.
    OpenUrlGoogle Scholar
  7. 7.↵
    1. Corvari V.,
    2. Narhi L. O.,
    3. Spitznagel T. M.,
    4. Afonina N.,
    5. Cao S.,
    6. Cash P.,
    7. Cecchini I.,
    8. DeFelippis M. R.,
    9. Garidel P.,
    10. Herre A.,
    11. Koulov A. V.,
    12. Lubiniecki T.,
    13. Mahler H.-C.,
    14. Mangiagalli P.,
    15. Nesta D.,
    16. Perez-Ramirez B.,
    17. Polozova A.,
    18. Rossi M.,
    19. Schmidt R.,
    20. Simler R.,
    21. Singh S.,
    22. Weiskopf A.,
    23. Wuchner K.
    Subvisible (2–100 µm) Particle Analysis during Biotherapeutic Drug Product Development: Part 2, Experience with the Application of Subvisible Particle Analysis. Biologicals 2015, 43 (6), 457–473.
    OpenUrlGoogle Scholar
  8. 8.↵
    1. Demeule B.,
    2. Messick S.,
    3. Shire S. J.,
    4. Liu J.
    Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies. AAPS J. 2010, 12 (4), 708–715.
    OpenUrlPubMedGoogle Scholar
  9. 9.↵
    1. Singh S. K.,
    2. Afonina N.,
    3. Awwad M.,
    4. Bechtold-Peters K.,
    5. Blue J. T.,
    6. Chou D.,
    7. Cromwell M.,
    8. Krause H.-J.,
    9. Mahler H.-C.,
    10. Meyer B. K.,
    11. Narhi L.,
    12. Nesta D. P.,
    13. Spitznagel T.
    An Industry Perspective on the Monitoring of Subvisible Particles as a Quality Attribute for Protein Therapeutics. J. Pharm. Sci. 2010, 99 (8), 3302–3321.
    OpenUrlCrossRefPubMedGoogle Scholar
  10. 10.↵
    1. Burdick R.,
    2. LeBlond D.,
    3. Pfahler L.,
    4. Quiroz J.,
    5. Sidor L.,
    6. Vukovinsky K.,
    7. Zhang L.
    Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry; Springer International Publishing AG, 2017.
    Google Scholar
  11. 11.↵
    1. Agresti A.
    Categorical Data Analysis, 3rd ed.; John Wiley & Sons, 2013.
    Google Scholar
  12. 12.↵
    1. Ramirez J. G.
    Modeling Sub-Visible Particle Data: Product Held at Accelerated Stability Conditions. Presented at the 36th Midwest Biopharmaceutical Statistics Workshop (MBSW), Muncie, IN, May 20–22, 2013.
    Google Scholar
  13. 13.↵
    1. Zhang H.,
    2. Lu N.,
    3. Feng C.,
    4. Thurston S. W.,
    5. Xia Y.,
    6. Zhu L.,
    7. Tu X. M.
    On Fitting Generalized Liner Mixed-Effects Models for Binary Responses Using Different Statistical Packages. Stat. Med. 2011, 30 (20), 2562–2572.
    OpenUrlCrossRefPubMedGoogle Scholar
  14. 14.↵
    1. Larsen K.,
    2. Petersen J. H.,
    3. Budtz-Jørgensen E.,
    4. Endahl L.
    Interpreting Parameters in the Logistic Regression Model with Random Effects. Biometrics 2000, 56 (3), 909–914.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  15. 15.↵
    1. Aitchison J.,
    2. Ho C. H.
    The Multivariate Poisson-Log Normal Distribution. Biometrika 1989, 76 (4), 643–653.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  16. 16.↵
    1. Cameron A. C.,
    2. Trivedi K.
    Regression Analysis of Count Data, 2nd ed.; Cambridge University Press: New York, 1998.
    Google Scholar
  17. 17.↵
    1. Hedeker D.
    A Mixed-Effect Multinomial Logistic Regression Model. Stat. Med. 2003, 22 (9), 1433–1446.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  18. 18.↵
    1. Bolker B. M.
    Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. Trends Ecol. Evol. 2009, 24 (3), 127–135.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  19. 19.↵
    1. Heiny E. L.,
    2. Frisby C. C.
    An Ordinal Logistic Regression Model for the Masters Golf Tournament. Chance 2018, 31 (3), 44–58.
    OpenUrlGoogle Scholar
  20. 20.↵
    SAS Institute Inc. SAS/STAT User's Guide; SAS Institute Inc: Cary, NC, 2018.
    Google Scholar
  21. 21.↵
    R Core Team. R: A Language and Environment for Statistical Computing, 2018. R Foundation for Statistical Computing Web site. http://www.R-project.org (accessed November 7, 2019).
    Google Scholar
  22. 22.↵
    1. Krishnamoorthy K.,
    2. Xia Y.,
    3. Xie F.
    A Simple Approximate Procedure for Constructing Binomial and Poisson Tolerance Intervals. Commun. Stat. Theory Methods 2011, 40 (12), 2243–2258.
    OpenUrlGoogle Scholar
  23. 23.↵
    1. Bates D.,
    2. Machler M.,
    3. Bolker B.,
    4. Walker S.
    Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67 (1), 1–48.
    OpenUrlCrossRefPubMedGoogle Scholar
  24. 24.↵
    1. Christensen R. H. B.
    Ordinal—Regression Model for Ordinal Data. R Package Version 2019.3-9, 2019. http://www.cran.r-project.org/package=ordinal/ (accessed November 7, 2019).
    Google Scholar
  25. 25.↵
    1. Young D. S.
    An R Package for Estimating Tolerance Intervals. J. Stat. Softw. 2010, 36 (5), 1–39.
    OpenUrlCrossRefPubMedGoogle Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 3
May/June 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Models for Counts and Particle Size Distributions of Subvisible Particle Data
Jorge Quiroz, Elsa M. Vazquez, Jeffrey Wilson, Anita Dabbara, Jason K. Cheung
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 213-229; DOI: 10.5731/pdajpst.2020.011510
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results
    • 4. Discussion
    • 5. Conclusion
    • Conflict of Interest Declaration
    • APPENDIX A: R CODES
    • APPENDIX B: SAS CODES
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Nitrogen Dioxide sterilization follows log-linear microbial inactivation kinetics using Geobacillus stearothermophilus biological indicators
  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
Show more Research

Similar Articles

Keywords

  • Generalized linear mixed models
  • Poisson regression with normal random effects
  • Ordinal logistic regression with normal random effects models
  • Overdispersion

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Models for Counts and Particle Size Distributions of Subvisible Particle Data
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Models for Counts and Particle Size Distributions of Subvisible Particle Data
Jorge Quiroz, Elsa M. Vazquez, Jeffrey Wilson, Anita Dabbara, Jason K. Cheung
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 213-229; DOI: 10.5731/pdajpst.2020.011510

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.