Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Single-Use System Integrity II: Characterization of Liquid Leakage Mechanisms

Saeedeh Aliaskarisohi, Chethan Kumar, Marc Hogreve, Nelly Montenay, Jonathan Cutting, Ashok Mundrigi and Anilkumar Paramathma
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 258-272; DOI: https://doi.org/10.5731/pdajpst.2020.012088
Saeedeh Aliaskarisohi
1Product Development, Sartorius Stedim Biotech GmbH, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chethan Kumar
2Fluid Management Technology, Sartorius Stedim Pvt. Ltd, India;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Hogreve
3 Integrity Testing, Sartorius Stedim Biotech GmbH, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: marc.hogreve@sartorius.com
Nelly Montenay
4Sartorius Stedim Biotech, France;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan Cutting
5Advanced Materials & Processing, Sartorius Stedim North America, Inc.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashok Mundrigi
6Sartorius Stedim Pvt. Ltd, India; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anilkumar Paramathma
7Fluid Management Technology, Sartorius Stedim Pvt. Ltd, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    U.S. Pharmacopeial Convention. General Chapter <1207> Packaging Integrity Evaluation—Sterile Products. In USP–39 NF 34, USP: Rockville, MD, 2016.
    Google Scholar
  2. 2.↵
    1. Kirsch L. E.,
    2. Nguyen L.,
    3. Moeckly C. S.,
    4. Gerth R.
    Pharmaceutical Container/Closure Integrity II: The Relationship between Microbial Ingress and Helium Leak Rates in Rubber-Stoppered Glass Vials. PDA J. Pharm. Sci. Technol. 1997, 51 (5), 195–202.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  3. 3.↵
    1. Moghimi N.,
    2. Kim S.-J.,
    3. Park S.-I.
    Assessing of Flexible Packaging Integrity: Using the Aerosolization Bacteria. Packag. Technol. Sci. 2016, 29 (3), 135–143.
    OpenUrlGoogle Scholar
  4. 4.↵
    1. Moghimi N.,
    2. Park S.-I.
    Leakage Assessment of Flexible Pouches Using Dye Penetration Test with Correlation to Modeled Bacterial Aerosol Challenge Test. Food Sci. Biotechnol. 2017, 26 (4), 947–953.
    OpenUrlGoogle Scholar
  5. 5.↵
    1. Amesz J.
    Conversion of Leak Flow-Rates for Various Fluids and Different Pressure Conditions; EUR 2982.e; European Atomic Energy Community—Euratom: Brussels, 1966.
    Google Scholar
  6. 6.↵
    1. Zhu Y.,
    2. Petkovic-Duran K.
    Capillary Flow in Microchannels. Microfluid. Nanofluid. 2010, 8 (2), 275–282.
    OpenUrlGoogle Scholar
  7. 7.↵
    1. Mala G. M.,
    2. Li D.
    Flow Characteristics of Water in Microtubes. Int. J. Heat Fluid Flow 1999, 20 (2), 142–148.
    OpenUrlCrossRefGoogle Scholar
  8. 8.↵
    1. Azzouz H.
    The Dependence of the Cross-Sectional Shape on the Hydraulic Resistance of Microchannels; 3-weeks Course Report s022973; Department of Micro and Nanotechnology—Technical University of Denmark, 2004.
    Google Scholar
  9. 9.↵
    1. Bahrami M.,
    2. Yovanovich M. M.,
    3. Culham J. R.
    Pressure Drop of Fully-Developed, Laminar Flow in Rough Microtubes. Proceedings of MICROMINI 2005, 3rd International Conference on Microchannels and Minichannels, Toronto, Canada, June 13–15, 2005.
    Google Scholar
  10. 10.↵
    1. Christov I. C.,
    2. Cognet V.,
    3. Shidhore T. C.,
    4. Stone H. A.
    Flow Rate-Pressure Drop Relation for Deformable Shallow Microfluidic Channels. J. Fluid Mech. 2018, 841 267–286.
    OpenUrlGoogle Scholar
  11. 11.↵
    1. Xu B.,
    2. Ooi K. T.,
    3. Mavriplis C.,
    4. Zaghloul M. E.
    Viscous Dissipation Effects for Liquid Flow in Microchannels. J. Micromech. Microeng. 2002, 13 (1): 53–57.
    OpenUrlGoogle Scholar
  12. 12.↵
    1. Guenther A.,
    2. Kreutzer M. T.
    Multiphase Flow. In Fluid Dynamics in Microchannels, 2009. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
    Google Scholar
  13. 13.↵
    1. Li Z.-X.,
    2. Du D.,
    3. Guo Z.-Y.
    Experimental Study on Flow Characteristics of Liquid in Circular Microtubes. Microscale Thermophys. Eng. 2003, 7 (3), 253–265.
    OpenUrlGoogle Scholar
  14. 14.↵
    1. Celata G. P.,
    2. Cumo M.,
    3. Guglielmi M.,
    4. Zummo G.
    Experimental Investigation of Hydraulic and Single-Phase Heat Transfer in 0.130-mm Capillary Tube. Microscale Thermophys. Eng. 2002, 6 (2), 85–97.
    OpenUrlGoogle Scholar
  15. 15.↵
    1. Jiang X. N.,
    2. Zhou Z. Y.,
    3. Huang X. Y.,
    4. Liu C. Y.
    Laminar Flow through Microchannels Used for Microscale Cooling Systems. Proceedings of the 1997 1st Electronic Packaging Technology Conference (Cat. No.97TH8307), Singapore; IEEE, 1997, 119–122.
    Google Scholar
  16. 16.↵
    1. Kandlikar S. G.,
    2. Joshi S.,
    3. Tian S.
    Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes. Proceedings of the 35th National Heat Transfer Conference, Anaheim, CA, June 10–12, 2001; ASME, 2001; pp 1609–1618
    Google Scholar
  17. 17.↵
    1. Churaev N. V.,
    2. Sobolev V. D.,
    3. Somov A. N.
    Slippage of Liquids over Lyophobic Solid Surfaces. J. Colloid Interface Sci. 1984, 97 (2), 574–581.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  18. 18.↵
    1. Pit R.,
    2. Hervet H.,
    3. Léger L.
    Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces. Phys. Rev. Lett. 2000, 85 (5), 980–983.
    OpenUrlCrossRefPubMedWeb of ScienceGoogle Scholar
  19. 19.↵
    1. Tretheway D. C.,
    2. Meinhart C. D.
    Apparent Fluid Slip at Hydrophobic Microchannel Walls. Phys. Fluids 2002, 14 (3), L9–12.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  20. 20.↵
    1. Choi C.-H.,
    2. Westin K. J. A.,
    3. Breuer K. S.
    Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels. Phys. Fluids 2003, 15 (10), 2897–2902.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  21. 21.↵
    1. Song Z.,
    2. Lin B.,
    3. Ban H.,
    4. Liu S.
    Experimental Study of Flow in Micropipette. Proceedings of IMECE2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, Nov 5–10, 2006; ASME, 2006; pp 1–9.
    Google Scholar
  22. 22.↵
    1. Tretheway D. C.,
    2. Meinhart C. D.
    A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels. Phys. Fluids 2004, 16 (5), 1509–1515.
    OpenUrlGoogle Scholar
  23. 23.↵
    1. Bahrami M.,
    2. Tamayol A.,
    3. Taheri P.
    Slip-Flow Pressure Drop in Microchannels of General Cross Section. J. Fluids Eng. 2009, 131 (3), 031201.
    Google Scholar
  24. 24.↵
    1. Grine L.,
    2. Bouzid A.-H.
    Liquid Leak Predictions in Micro and Nanoporous Gaskets. J. Pressure Vessel Technol. 2011, 133 (5), 051402.
    Google Scholar
  25. 25.↵
    1. Myers T. G.
    Why Are Slip Lengths So Large in Carbon Nanotubes? Microfluid. Nanofluid. 2011, 10 (5), 1141–1145.
    OpenUrlGoogle Scholar
  26. 26.↵
    1. Grine L.,
    2. Bouzid A.-H.
    Analytical and Experimental Studies of Liquid and Gas Leaks through Micro and Nano-Porous Gaskets. Mater. Sci. Appl. 2013, 4 (8A), 32–42.
    OpenUrlGoogle Scholar
  27. 27.↵
    1. Nagayama G.,
    2. Matsumoto T.,
    3. Fukushima K.,
    4. Tsuruta T.
    Scale Effect of Slip Boundary Condition at Solid–Liquid Interface. Sci. Rep. 2017, 7 (1), 1–8.
    OpenUrlCrossRefPubMedGoogle Scholar
  28. 28.↵
    1. Keller S.,
    2. Marcy J.,
    3. Blakistone B.,
    4. Hackney C.,
    5. Carter W. H.,
    6. Lacy G.
    Application of Fluid Modeling to Determine Threshold Leak Size for Liquid Foods. J. Food Prot. 2003, 66 (7), 1260–1268.
    OpenUrlPubMedGoogle Scholar
  29. 29.↵
    1. Aliaskarisohi S.,
    2. Hogreve M.,
    3. Langlois C.,
    4. Cutting J.,
    5. Barbaroux M.,
    6. Cappia J. M.,
    7. Menier M. C.
    Single-Use System Integrity I: Using a Microbial Ingress Test Method to Determine the Maximum Allowable Leakage Limit (MALL). PDA J. Pharm. Sci. Technol. 2019, 73 (5), 459–469.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  30. 30.↵
    1. Gibney M. J.
    Predicting Package Defects: Quantification of Critical Leak Size. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2000.
    Google Scholar
  31. 31.↵
    1. Tate T.
    On the Magnitude of a Drop of Liquid Formed under Different Circumstances. Philos. Mag. 1864, 27 (181), 176–180.
    OpenUrlGoogle Scholar
  32. 32.↵
    1. Rayleigh L.
    The Size of Drops. Philos. Mag. 1899, 48 (293), 321–337.
    OpenUrlGoogle Scholar
  33. 33.↵
    1. Harkins W. D.,
    2. Brown F. E.
    The Determination of Surface Tension (Free Surface Energy), and the Weight of Falling Drops: The Surface Tension of Water and Benzene by the Capillary Height Method. J. Am. Chem. Soc. 1919, 41 (4), 499–524.
    OpenUrlCrossRefWeb of ScienceGoogle Scholar
  34. 34.↵
    1. Neumann H.,
    2. Seeliger R.
    Über Die Abhängigkeit Der Größe Von Flüssigkeitstropfen Von Der Bildungsgeschwindigkeit. Z Phys. A: Hadrons Nucl. 1939, 114 (9–10), 571–578.
    OpenUrlGoogle Scholar
  35. 35.↵
    1. Hummel S.,
    2. Bogner M.,
    3. Haub M.,
    4. Saegebarth J.,
    5. Sandmaier H.
    A New Approach for the Calculation of Falling Droplets from a Cylindrical Glass Capillary Based on Force Balance and Velocity. J. Phys: Conf. Ser. 2017, 922 012003
    Google Scholar
  36. 36.↵
    1. Gilchrist J. E.,
    2. Shah D. B.,
    3. Radle D. C.,
    4. Dickerson R. W.
    , Jr. Leak Detection in Flexible Retort Pouches. J.Food Prot. 1989, 52 (6), 412–415.
    OpenUrlGoogle Scholar
  37. 37.↵
    1. Bix L.,
    2. Kassarjian O.,
    3. Iwaszkiewicz R. A.,
    4. Severin J. E.
    Examining Defects of Various Sizes in Device Packages. Business Briefing: Global HealthCare–Medical Device Manufacturing and Technology, 2004, 72–77.
    Google Scholar
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 75 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 75, Issue 3
May/June 2021
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Single-Use System Integrity II: Characterization of Liquid Leakage Mechanisms
Saeedeh Aliaskarisohi, Chethan Kumar, Marc Hogreve, Nelly Montenay, Jonathan Cutting, Ashok Mundrigi, Anilkumar Paramathma
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 258-272; DOI: 10.5731/pdajpst.2020.012088
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Theory
    • Results and Discussion
    • Conclusion
    • Conflict of Interest Declaration
    • Acknowledgments
    • APPENDIX
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Single-Use System Integrity IV: A Holistic Approach Based on Compiled Scientific Study Data
  • Google Scholar

More in this TOC Section

  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
  • Preservative Efficacy Testing of Refrigerated Pharmaceuticals: Choice of Challenging Isolate and Storage Temperature
  • Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
Show more Research

Similar Articles

Keywords

  • Single-use system (SUS)
  • single-use system integrity (SUSI)
  • liquid leak testing
  • maximum allowable leakage limit (MALL)
  • microbial ingress testing
  • Integrity testing

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Single-Use System Integrity II: Characterization of Liquid Leakage Mechanisms
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Single-Use System Integrity II: Characterization of Liquid Leakage Mechanisms
Saeedeh Aliaskarisohi, Chethan Kumar, Marc Hogreve, Nelly Montenay, Jonathan Cutting, Ashok Mundrigi, Anilkumar Paramathma
PDA Journal of Pharmaceutical Science and Technology May 2021, 75 (3) 258-272; DOI: 10.5731/pdajpst.2020.012088

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.