Abstract
In the past decades, the silicone layer thickness and its distribution on the inner glass barrels of prefilled syringes have been characterized in several studies. However, the limited number of adequate methods to characterize thin baked-on silicone layers and the destructive nature of some analytical techniques suggest challenges to the inter-lab reproducibility of some methods. In this study, the measured silicone layer thickness of baked-on siliconized syringes was compared between two laboratories, both equipped with white light reflectometry coupled to laser interferometry instrumentation (Bouncer, LE UT 1.0, LE UT 2.0). The quantity of silicone oil of a subset of those syringes was measured by Fourier transform infrared spectroscopy. Glide force tests were realized as complementary measurements on both syringes analyzed by white light reflectometry coupled to laser interferometry instrumentation and on non-analyzed identical syringes from the same lot. Silicone profiles of all prefilled syringes including the limit of detection results replaced with 20 nm were comparable, but values were slightly lower when measured with the Bouncer instrument. An increase of the layer thickness from the finger flange to the needle side was found for all syringes with all instruments (20 nm to 130–140 nm). Glide force results were similar except for a difference in peak width in the break loose region between the laboratories. The mean quantities of silicone oil found by both laboratories were similar (64 µg/syringe and 69 µg/syringe). Overall, comparable results between laboratories suggest a good reproducibility of the thickness measurement method as a result of thorough method understanding and defining key method parameters. Hence this study presents a robust inter-lab comparison between silicone layer thickness measurements that has been a lack in the literature up to now.
- Comparison study
- silicone oil layer thickness and distribution
- white light reflectometry
- laser interferometry
- glide forces
- Fourier transform infrared spectroscopy
- baked-on siliconized syringes
- © PDA, Inc. 2021
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.