Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

An Investigation into the Spatial Distribution of Moisture in Freeze-Dried Products Using NIR Spectroscopy and Chemical Imaging

Azheruddin Mohammed, Antoine Cournoyer and Ryan Gosselin
PDA Journal of Pharmaceutical Science and Technology March 2023, 77 (2) 55-66; DOI: https://doi.org/10.5731/pdajpst.2020.012443
Azheruddin Mohammed
1Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antoine Cournoyer
2Process Monitoring Automation and Control Group, Pfizer Global Supply, 17300 Trans-Canada Highway, Kirkland, Québec, Canada PQ H9J 2M5; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryan Gosselin
3Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ryan.gosselin@usherbrooke.ca
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Pikal M. J.,
    2. Roy M. L.,
    3. Shah S.
    Mass and Heat Transfer in Vial Freeze‐Drying of Pharmaceuticals: Role of the Vial. J. Pharm. Sci. 1984, 73 (9), 1224–1237.
    OpenUrlPubMed
  2. 2.↵
    1. Varshney D.,
    2. Singh M.
    1. Wang B.,
    2. McCoy T. R.,
    3. M.,
    4. Pikal M. J.,
    5. Varshney D.
    Lyophilization of Therapeutic Proteins in Vials: Process Scale-Up and Advances in Quality by Design. In: Lyophilized Biologics and Vaccines; Varshney D., Singh M., Eds.; Springer: New York, 2015; pp 121–156.
  3. 3.↵
    1. Sundaram J.,
    2. Shay Y.-H. M.,
    3. Sane S. U.,
    4. Hsu C. C.
    Design Space Development for Lyophilization Using DOE and Process Modeling. BioPharm Int. 2010, 23 (9), 26–36.
    OpenUrl
  4. 4.↵
    1. Van Bockstal P.-J.,
    2. de Beer T.,
    3. Corver J.
    A Continuous and Controlled Pharmaceutical Freeze-Drying Technology for Unit Doses. Eur. Pharm. Rev. 2017, 22 (6), 51–53.
    OpenUrl
  5. 5.↵
    1. Van Bockstal P.-J.,
    2. Corver J.,
    3. de Beer T.
    Product Temperature Monitoring and Control via Thermal Imaging during Continuous Freeze-Drying of Pharmaceutical Unit Doses. Am. Pharm. Rev. 2019, 22 (5).
  6. 6.↵
    U.S. Food and Drug Administration. Guidance for Industry: ICH Q8(R2) Pharmaceutical Development. Center for Biologics Evaluation and Research. U.S. Department of Health and Human Services: Rockville, MD, 2009.
  7. 7.↵
    1. Koganti V. R.,
    2. Shalaev E. Y.,
    3. Berry M. R.,
    4. Osterberg T.,
    5. Youssef M.,
    6. Hiebert D. N.,
    7. Kanka F. A.,
    8. Nolan M.,
    9. Barrett R.,
    10. Scalzo G.,
    11. Fitzpatrick G.,
    12. Fitzgibbon N.,
    13. Luthra S.,
    14. Zhang L.
    Investigation of Design Space for Freeze-Drying: Use of Modeling for Primary Drying Segment of a Freeze-Drying Cycle. AAPS PharmSciTech 2011, 12 (3), 854–861.
    OpenUrlPubMed
  8. 8.↵
    1. Colucci D.,
    2. Prats-Montalbán J. M.,
    3. Fissore D.,
    4. Ferrer A.
    Application of Multivariate Image Analysis for on-Line Monitoring of a Freeze-Drying Process for Pharmaceutical Products in Vials. Chemom. Intell. Lab. Syst. 2019, 187, 19–27.
    OpenUrl
  9. 9.↵
    1. Patel S. M.,
    2. Doen T.,
    3. Pikal M. J.
    Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS PharmSciTech 2010, 11 (1), 73–84.
    OpenUrlPubMed
  10. 10.↵
    1. Schersch K.,
    2. Betz O.,
    3. Garidel P.,
    4. Muehlau S.,
    5. Bassarab S.,
    6. Winter G.
    Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins I: Stability after Freeze-Drying. J. Pharm. Sci. 2010, 99 (5), 2256–2278.
    OpenUrlPubMed
  11. 11.↵
    1. Rey L.
    1. Galan M.
    Monitoring and Control of Industrial Freeze-Drying Operations: The Challenge of Implementing Quality-by-Design (QbD). In Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, 3rd ed.; Rey L., Ed.; CRC Press, Inc: Boca Raton, FL, 2016; pp 441–459.
  12. 12.↵
    1. Fissore D.,
    2. Pisano R.,
    3. Barresi A. A.
    Process Analytical Technology for Monitoring Pharmaceuticals Freeze-Drying–A Comprehensive Review. Drying Technol. 2018, 36 (15), 1839–1865.
    OpenUrl
  13. 13.↵
    1. Patel S. M.,
    2. Pikal M.
    Process Analytical Technologies (PAT) in Freeze-Drying of Parenteral Products. Pharm. Dev. Technol. 2009, 14 (6), 567–587.
    OpenUrlPubMed
  14. 14.↵
    1. Schneid S. C.,
    2. Gieseler H.,
    3. Kessler W. J.,
    4. Luthra S. A.,
    5. Pikal M. J.
    Optimization of the Secondary Drying Step in Freeze Drying Using TDLAS Technology. AAPS PharmSciTech 2011, 12 (1), 379–387.
    OpenUrlPubMed
  15. 15.↵
    1. Schneid S.,
    2. Gieseler H.
    Process Analytical Technology (PAT) in Freeze Drying: Tunable Diode Laser Absorption Spectroscopy as an Evolving Tool for Cycle Monitoring. Eur. Pharm. Rev. 2009, (6), 18–25.
  16. 16.↵
    1. Ganguly A.,
    2. Stewart J.,
    3. Rhoden A.,
    4. Volny M.,
    5. Saad N.
    Mass Spectrometry in Freeze-Drying: Motivations for Using a Bespoke PAT for Laboratory and Production Environment. Eur. J. .Pharm. Biopharm. 2018, 127, 298–308.
    OpenUrl
  17. 17.↵
    1. Schneid S.,
    2. Gieseler H.
    Evaluation of a New Wireless Temperature Remote Interrogation System (TEMPRIS) to Measure Product Temperature during Freeze Drying. AAPS PharmSciTech 2008, 9 (3), 729–739.
    OpenUrlPubMed
  18. 18.↵
    1. Sane P.,
    2. Varma N.,
    3. Ganguly A.,
    4. Pikal M.,
    5. Alexeenko A.,
    6. Bogner R. H.
    Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity. AAPS PharmSciTech 2017, 18 (2), 369–380.
    OpenUrl
  19. 19.↵
    1. Kauppinen A.,
    2. Toiviainen M.,
    3. Lehtonen M.,
    4. Järvinen K.,
    5. Paaso J.,
    6. Juuti M.,
    7. Ketolainen J.
    Validation of a Multipoint Near-Infrared Spectroscopy Method for In-Line Moisture Content Analysis during Freeze-Drying. J. Pharm. Biomed. Anal. 2014, 95, 229–237.
    OpenUrl
  20. 20.↵
    1. Daller S.,
    2. Friess W.,
    3. Schroeder R.
    Energy Transfer in Vials Nested in a Rack System during Lyophilization. Pharmaceutics 2020, 12 (1), 61.
    OpenUrl
  21. 21.↵
    1. Brülls M.,
    2. Folestad S.,
    3. Sparén A.,
    4. Rasmuson A.
    In-Situ Near-Infrared Spectroscopy Monitoring of the Lyophilization Process. Pharm. Res. 2003, 20 (3), 494–499.
    OpenUrlPubMed
  22. 22.↵
    1. De Beer T. R. M.,
    2. Vercruysse P.,
    3. Burggraeve A.,
    4. Quinten T.,
    5. Ouyang J.,
    6. Zhang X.,
    7. Vervaet C.,
    8. Remon J. P.,
    9. Baeyens W. R. G.
    In-Line and Real-Time Process Monitoring of a Freeze Drying Process Using Raman and NIR Spectroscopy as Complementary Process Analytical Technology (PAT) Tools. J. Pharm. Sci. 2009, 98 (9), 3430–3446.
    OpenUrlPubMed
  23. 23.↵
    1. Kauppinen A.,
    2. Toiviainen M.,
    3. Korhonen O.,
    4. Aaltonen J.,
    5. Järvinen K.,
    6. Paaso J.,
    7. Juuti M.,
    8. Ketolainen J.
    In-Line Multipoint Near-Infrared Spectroscopy for Moisture Content Quantification during Freeze-Drying. Anal. Chem. 2013, 85 (4), 2377–2384.
    OpenUrl
  24. 24.↵
    1. Emteborg H.,
    2. Zeleny R.,
    3. Charoud-Got J.,
    4. Martos G.,
    5. Lüddeke J.,
    6. Schellin H.,
    7. Teipel K.
    Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results. J. Pharm. Sci. 2014, 103 (7), 2088–2097.
    OpenUrl
  25. 25.↵
    1. Lietta E.,
    2. Colucci D.,
    3. Distefano G.,
    4. Fissore D.
    On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. J. Pharm. Sci. 2019, 108 (1), 391–398.
    OpenUrl
  26. 26.↵
    1. Brouckaert D.,
    2. De Meyer L.,
    3. Vanbillemont B.,
    4. Van Bockstal P.-J.,
    5. Lammens J.,
    6. Mortier S.,
    7. Corver J.,
    8. Vervaet C.,
    9. Nopens I.,
    10. De Beer T.
    Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying. Anal. Chem. 2018, 90 (7), 4354–4362.
    OpenUrl
  27. 27.↵
    1. Hibler S.,
    2. Gieseler H.
    Primary Packaging Materials for Pharmaceutical Freeze-Drying: Moulded vs. Serum Tubing Vials. Eur. Pharm. Rev. 2010, (4).
  28. 28.↵
    1. May J. C.,
    2. Grim E.,
    3. Wheeler R. M.,
    4. West J.
    Determination of Residual Moisture in Freeze-Dried Viral Vaccines: Karl Fischer, Gravimetric and Thermogravimetric Methodologies. J. Biol. Stand. 1982, 10 (3), 249–259.
    OpenUrlPubMed
  29. 29.↵
    1. Trelea I. C.,
    2. Fonseca F.,
    3. Passot S.
    Dynamic Modeling of the Secondary Drying Stage of Freeze-Drying Reveals Distinct Desorption Kinetics for Bound Water. Drying Technol. 2016, 34 (3), 335–345.
    OpenUrl
  30. 30.↵
    1. Workman J.,
    2. Weyer L.
    Water. In: Practical Guide to Interpretive Near-Infrared Spectroscopy, 1st ed.; CRC Press, Inc., 2007, pp 63–70.
  31. 31.↵
    1. Sheehan P.,
    2. Liapis A. I.
    Modeling of the Primary and Secondary Drying Stages of the Freeze Drying of Pharmaceutical Products in Vials: Numerical Results Obtained from the Solution of a Dynamic and Spatially Multi-Dimensional Lyophilization Model for Different Operational Policies. Biotechnol. Bioeng. 1998, 60 (6), 712–728.
    OpenUrlPubMed
  32. 32.↵
    1. Nam J. H.,
    2. Song C. S.
    An Efficient Calculation of Multidimensional Freeze-Drying Problems Using Fixed Grid Method. Drying Technol. 2005, 23 (12), 2491–2511.
    OpenUrl
  33. 33.↵
    1. Rambhatla S.,
    2. Pikal M. J.
    Heat and Mass Transfer Scale-UP Issues during Freeze-Drying, I: Atypical Radiation and the Edge Vial Effect. AAPS PharmSciTech 2003, 4 (2), 22–31.
    OpenUrl
  34. 34.↵
    1. Dalvi H.,
    2. Fauteux-Lefebvre C.,
    3. Guay J.-M.,
    4. Abatzoglou N.,
    5. Gosselin R.
    Concentration Monitoring with Near Infrared Chemical Imaging in a Tableting Press. J. Spectral Imag. 2018, 7 (1), 1–18.
    OpenUrl
  35. 35.↵
    1. Wold S.
    Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics 1978, 20 (4), 397–405.
    OpenUrlCrossRefWeb of Science
  36. 36.↵
    1. Eriksson L.,
    2. Byrne T.,
    3. Johansson E.,
    4. Trygg J.,
    5. Vikstrom C.
    In: Multi- and Megavariate Data Analysis: Basic Principles and Applications, 3rd ed.; MKS Umetrics, 2013; pp 71–112.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 77 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 77, Issue 2
March/April 2023
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An Investigation into the Spatial Distribution of Moisture in Freeze-Dried Products Using NIR Spectroscopy and Chemical Imaging
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
An Investigation into the Spatial Distribution of Moisture in Freeze-Dried Products Using NIR Spectroscopy and Chemical Imaging
Azheruddin Mohammed, Antoine Cournoyer, Ryan Gosselin
PDA Journal of Pharmaceutical Science and Technology Mar 2023, 77 (2) 55-66; DOI: 10.5731/pdajpst.2020.012443

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
An Investigation into the Spatial Distribution of Moisture in Freeze-Dried Products Using NIR Spectroscopy and Chemical Imaging
Azheruddin Mohammed, Antoine Cournoyer, Ryan Gosselin
PDA Journal of Pharmaceutical Science and Technology Mar 2023, 77 (2) 55-66; DOI: 10.5731/pdajpst.2020.012443
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • 1. Introduction
    • 2. Materials and Methods
    • 3. Results and Discussion
    • 4. Conclusions
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Quantitative and Qualitative Evaluation of Microorganism Profile Identified in Bioburden Analysis in a Biopharmaceutical Facility in Brazil: Criteria for Classification and Management of Results
  • Evaluation of Extreme Depyrogenation Conditions on the Surface Hydrolytic Resistance of Glass Containers for Pharmaceutical Use
  • A Holistic Approach for Filling Volume Variability Evaluation and Control with Statistical Tool
Show more Research

Similar Articles

Keywords

  • Freeze-drying
  • NIR
  • NIR imaging
  • PAT
  • Spatial moisture variations
  • Chemometrics
  • Partial least squares

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire