Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Design, Development, and Validation of a Culture-Independent Nucleic Acid Diagnostics Method for the Rapid Detection and Quantification of the Burkholderia cepacia Complex in Water with an Equivalence to ISO/TS 12869:2019

Huong Duong, Shannon Fullbrook, Kate Reddington, Elizabeth Minogue and Thomas Barry
PDA Journal of Pharmaceutical Science and Technology July 2023, 77 (4) 296-310; DOI: https://doi.org/10.5731/pdajpst.2021.012728
Huong Duong
1Nucleic Acid Diagnostics Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shannon Fullbrook
1Nucleic Acid Diagnostics Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kate Reddington
2Microbial Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth Minogue
1Nucleic Acid Diagnostics Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Barry
1Nucleic Acid Diagnostics Laboratory, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: thomas.barry@nuigalway.ie
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Eberl L.,
    2. Vandamme P.
    Members of the Genus Burkholderia: Good and Bad Guys. F1000Res. 2016, 5 1007.
    OpenUrl
  2. 2.↵
    1. Baylan O.
    An Opportunistic Pathogen Frequently Isolated from Immunocompromised Patients: Burkholderia cepacia Complex. Mikrobiyol. Bul. 2012, 46 (2), 304–318.
    OpenUrlPubMed
  3. 3.↵
    1. Lalitha P.,
    2. Das M.,
    3. Purva P. S.,
    4. Karpagam R.,
    5. Geetha M.,
    6. Priya J. L.,
    7. Babu K. N.
    Postoperative Endophthalmitis Due to Burkholderia cepacia Complex from Contaminated Anaesthetic Eye Drops. Br. J. Ophthalmol. 2014, 98 (11), 1498–1502.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Brooks R. B.,
    2. Mitchell P. K.,
    3. Miller J. R.,
    4. Vasquez A. M.,
    5. Havlicek J.,
    6. Lee H.,
    7. Quinn M.,
    8. Adams E.,
    9. Baker D.,
    10. Greeley R.,
    11. Ross K.,
    12. Daskalaki I.,
    13. Walrath J.,
    14. Moulton-Meissner H.,
    15. Crist M. B
    , Burkholderia cepacia Workgroup. Multistate Outbreak of Burkholderia cepacia Complex Bloodstream Infections after Exposure to Contaminated Saline Flush Syringes: United States, 2016–2017. Clin. Infect. Dis. 2019, 69 (3), 445–449.
    OpenUrlCrossRef
  5. 5.↵
    1. Abdelfattah R.,
    2. Al-Jumaah S.,
    3. Al-Qahtani A.,
    4. Al-Thawadi S.,
    5. Barron I.,
    6. Al-Mofada S.
    Outbreak of Burkholderia cepacia Bacteraemia in a Tertiary Care Centre Due to Contaminated Ultrasound Probe Gel. J. Hosp. Infect. 2018, 98 (3), 289–294.
    OpenUrlCrossRef
  6. 6.↵
    1. dos Santos Saalfeld S. M.,
    2. Shinohara D. R.,
    3. dos Anjos Szczerepa M. M.,
    4. Martinez H. V.,
    5. Vieira de Campos E.,
    6. Mitsugui C. S.,
    7. Oliveira A. R.,
    8. Granzotto D. C. T.,
    9. Nishiyama S. A. B.,
    10. Tognim M. C. B.
    Consecutive Outbreaks of Burkholderia cepacia Complex Caused by Intrinsically Contaminated Chlorhexidine Mouthwashes. Am. J. Infect. Control 2020, 48 (11), 1348–1353.
    OpenUrl
  7. 7.↵
    1. Saalfeld S. M. D S.,
    2. Shinohara D. R.,
    3. Silva J. A.,
    4. Machado M. E. A.,
    5. Mitsugui C. S.,
    6. Tamura N. K.,
    7. Nishiyama S. A. B.,
    8. Tognim M. C. B.
    Interhospital Outbreak of Burkholderia cepacia Complex Ventilator-Associated Pneumonia (VAP) Caused by Contaminated Mouthwash in Coronavirus Disease 2019 (COVID-19) Patients. Infect. Control Hosp. Epidemiol. 2022, 43 (8), 1081–1083.
    OpenUrl
  8. 8.↵
    1. Yang S.,
    2. Hua M.,
    3. Liu X.,
    4. Du C.,
    5. Pu L.,
    6. Xiang P.,
    7. Wang L.,
    8. Liu J.
    Bacterial and Fungal Co-Infections among COVID-19 Patients in Intensive Care Unit. Microbes and Infection 2021, 23 (4–5), 104806.
    OpenUrl
  9. 9.↵
    1. Olcese C.,
    2. Casciaro R.,
    3. Pirlo D.,
    4. Debbia C.,
    5. Castagnola E.,
    6. Cresta F.,
    7. Castellani C.
    SARS-CoV-2 and Burkholderia cenocepacia Infection in a Patient with Cystic Fibrosis: An Unfavourable Conjunction? J Cystic Fibrosis 2021, 20 (3), e29–e31.
    OpenUrl
  10. 10.↵
    1. Jimenez L.
    Microbial Diversity in Pharmaceutical Product Recalls and Environments. PDA J. Pharm. Sci. Technol. 2007, 61 (5), 383–399.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Jimenez L.
    Analysis of FDA Enforcement Reports (2012-2019) to Determine the Microbial Diversity in Contaminated Non-Sterile and Sterile Drugs. Am. Pharm. Rev. [Online] 2019, 21, 48–73. http://www.americanpharmaceuticalreview.com/Featured-Articles/518912-Analysis-of-FDA-Enforcement-Reports-2012-2019-to-Determine-the-Microbial-Diversity-in-Contaminated-Non-Sterile-and-Sterile-Drugs/ (accessed May 4, 2020).
    OpenUrl
  12. 12.↵
    1. Torbeck L.,
    2. Raccasi D.,
    3. Guilfoyle D. E.,
    4. Friedman R. L.,
    5. Hussong D.
    Burkholderia cepacia: This Decision is Overdue. PDA J. Pharm. Sci. Technol. 2011, 65 (5), 535–543.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Ahn Y.,
    2. Kim J. M.,
    3. Kweon O.,
    4. Kim S.-J.,
    5. Jones R. C.,
    6. Woodling K.,
    7. da Costa G. G.,
    8. LiPuma J. J.,
    9. Hussong D.,
    10. Marasa B. S.,
    11. Cerniglia C. E.
    Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. mBio 2016, 7 (6), e01716-16.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Rose H.,
    2. Baldwin A.,
    3. Dowson C. G.,
    4. Mahenthiralingam E.
    Biocide Susceptibility of the Burkholderia cepacia Complex. J. Antimicrob. Chemother. 2009, 63 (3), 502–510.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    U. S. Food and Drug Administration. FDA Advises Drug Manufacturers that Burkholderia cepacia Complex Poses a Contamination Risk in Non-Sterile, Water-Based Drug Products, 2021. FDA Website. https://www.fda.gov/drugs/drug-safety-and-availability/fda-advises-drug-manufacturers-burkholderia-cepacia-complex-poses-contamination-risk-non-sterile (accessed November 3, 2021).
  16. 16.↵
    U.S. Food and Drug Administration. Microbiological Quality Considerations in Non-Sterile Drug Manufacturing—Draft Guidance for Industry, 2021. FDA Website. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/microbiological-quality-considerations-non-sterile-drug-manufacturing (accessed November 19, 2021).
  17. 17.↵
    1. Tavares M.,
    2. Kozak M.,
    3. Balola A.,
    4. Sá-Correia I.
    Burkholderia cepacia Complex Bacteria: A Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin. Microbiol. Rev. 2020, 33 (3), e00139–19.
    OpenUrl
  18. 18.↵
    U.S. Food and Drug Administration. Durisan Hand Sanitizer Recall Due to Microbial Contamination, 2021. FDA Website. https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/durisan-hand-sanitizer-recall-due-microbial-contamination (accessed November 10, 2021).
  19. 19.↵
    Medicines and Healthcare Products Regulatory Agency (MHRA). Class 2 Medicines Recall: Grünenthal Ltd, Palexia 20 mg/ml Oral Solution (PL 21727/0054), 2021. UK Government Web site. https://www.gov.uk/drug-device-alerts/class-2-medicines-recall-grunenthal-ltd-palexia-20-mg-slash-ml-oral-solution-pl-21727-slash-0054 (accessed November 10, 2021).
  20. 20.↵
    French National Drug and Health Product Agency (ANSM). Recall of several Anios Laboratories Products in France, 2019. ANSM Web site. https://ansm.sante.fr/actualites/point-de-situation-sur-les-dispositifs-medicaux-fabriques-par-les-laboratoires-anios (accessed November 10, 2021).
  21. 21.↵
    Health Canada. Recall of Various Medline Cosmetic Products in Canada, 2018. Government of Canada Web site. https://recalls-rappels.canada.ca/en/alert-recall/expanded-recall-medline-canada-corp-recalls-various-medline-cosmetic-products (accessed November 10, 2021).
  22. 22.↵
    1. Sandle T.
    Characterizing the Microbiota of a Pharmaceutical Water System-A Metadata Study. Microbiol. Infect. Dis. 2015, 3 (2), 1–8.
    OpenUrl
  23. 23.↵
    U.S. Pharmacopeial Convention. General Chapter <60> Microbiological Examination of Nonsterile Products—Tests for Burkholderia cepacia Complex. In USP 42–NF 37, USP: Rockville, MD, 2019.
  24. 24.↵
    1. Degrossi J. J.,
    2. López De Volder M. A.,
    3. Pioli V.,
    4. Breglia N.,
    5. Teves S.
    Comparación de Medios de Cultivo Selectivos Para El Aislamiento de Especies Del Taxón K Perteneciente al Complejo Burkholderia cepacia. Ars Pharm. 2019, 60 (2), 93–100.
    OpenUrl
  25. 25.↵
    1. Clancy E.,
    2. Coughlan H.,
    3. Higgins O.,
    4. Boo T. W.,
    5. Cormican M.,
    6. Barrett L.,
    7. Smith T. J.,
    8. Reddington K.,
    9. Barry T.
    Development of Internally Controlled Duplex Real-Time NASBA Diagnostics Assays for the Detection of Microorganisms Associated with Bacterial Meningitis. J. Microbiol. Methods 2016, 127, 197–202.
    OpenUrl
  26. 26.↵
    1. Collins M. E.,
    2. Popowitch E. B.,
    3. Miller M. B.
    Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58 (5), e02013-19.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Patel R.,
    2. Babady E.,
    3. Theel E. S.,
    4. Storch G. A.,
    5. Pinsky B. A.,
    6. St. George K.,
    7. Smith T. C.,
    8. Bertuzzi S.
    Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS–CoV-2/COVID-19. mBio 2020, 11 (2), e00722-20.
    OpenUrlFREE Full Text
  28. 28.↵
    1. Fox A. S.,
    2. Rao S. N.
    Syndromic Testing for the Diagnosis of Infectious Diseases: The Right Test If Used for the Right Patient. J. Antimicrob. Chemother. 2021, 76 (Supplement_3), iii2–iii3.
    OpenUrl
  29. 29.↵
    1. Henriques J.,
    2. Cardoso C.,
    3. Vitorino C.
    Rapid Microbiological Methods. They Are Rapid! Are They Fast? In Research Trends of Microbiology; MedDocs Publishers LLC, 2019.
  30. 30.↵
    International Organization for Standardization, ISO/TS 12869:2019 Water Quality—Detection and Quantification of Legionella spp. and/or Legionella pneumophila by Concentration and Genic Amplification by Quantitative Polymerase Chain Reaction (qPCR). ISO: Geneva, 2019.
  31. 31.↵
    1. Yun J. J.,
    2. Heisler L. E.,
    3. Hwang I. I.,
    4. Wilkins O.,
    5. Lau S. K.,
    6. Hyrcza M.,
    7. Jayabalasingham B.,
    8. Jin J.,
    9. McLaurin J.,
    10. Tsao M. S.,
    11. Der S. D.
    Genomic DNA Functions as a Universal External Standard in Quantitative Real-Time PCR. Nucleic Acids Res. 2006, 34 (12), e85.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Reddington K.,
    2. Schwenk S.,
    3. Tuite N.,
    4. Platt G.,
    5. Davar D.,
    6. Coughlan H.,
    7. Personne Y.,
    8. Gant V.,
    9. Enne V. I.,
    10. Zumla A.,
    11. Barry T.
    Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections. J. Clin. Microbiol. 2015, 53 (9), 2854–2860.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Altschul S. F.,
    2. Gish W.,
    3. Miller W.,
    4. Myers E. W.,
    5. Lipman D. J.
    Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215 (3), 403–410.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Bustin S. A.,
    2. Benes V.,
    3. Garson J. A.,
    4. Hellemans J.,
    5. Huggett J.,
    6. Kubista M.,
    7. Mueller R.,
    8. Nolan T.,
    9. Pfaffl M. W.,
    10. Shipley G. L.,
    11. Vandesompele J.,
    12. Wittwer C. T.
    The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55 (4), 611–622.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Hoorfar J.,
    2. Malorny B.,
    3. Abdulmawjood A.,
    4. Cook N.,
    5. Wagner M.,
    6. Fach P.
    Practical Considerations in Design of Internal Amplification Controls for Diagnostic PCR Assays. J. Clin. Microbiol. 2004, 42 (5), 1863–1868.
    OpenUrlFREE Full Text
  36. 36.↵
    1. Barry T.,
    2. Reddington K.,
    3. Minogue E.
    A Method for the Detection of Legionella. WO2018065497Al, April 12, 2018.
  37. 37.↵
    International Organization for Standardization. ISO 19458:2006 Water quality —Sampling for Microbiological Analysis. ISO: Geneva, 2006.
  38. 38.↵
    U.S. Pharmacopeial Convention. General Chapter <1231> Water for Pharmaceutical Purposes. In USP 35–NF 30, USP: Rockville, MD, 2012.
  39. 39.↵
    International Organization for Standardization. ISO 8199:2018 Water Quality—General Requirements and Guidance for Microbiological Examinations by Culture. ISO: Geneva, 2018.
  40. 40.↵
    1. Majaneva M.,
    2. Diserud O. H.,
    3. Eagle S. H. C.,
    4. Boström E.,
    5. Hajibabaei M.,
    6. Ekrem T.
    Environmental DNA Filtration Techniques Affect Recovered Biodiversity. Sci. Rep. 2018, 8 (1), 4682.
    OpenUrl
  41. 41.↵
    1. Burd E. M.
    Validation of Laboratory-Developed Molecular Assays for Infectious Diseases. Clin. Microbiol. Rev. 2010, 23 (3), 550–576.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Attia M. A.,
    2. Ali A. E.,
    3. Essam T. M.,
    4. Amin M. A.
    Direct Detection of Burkholderia cepacia in Susceptible Pharmaceutical Products Using Semi-Nested PCR. PDA J. Pharm. Sci. Technol. 2016, 70 (2), 99–108.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Jimenez L.,
    2. Jashari T.,
    3. Vasquez J.,
    4. Zapata S.,
    5. Bochis J.,
    6. Kulko M.,
    7. Ellman V.,
    8. Gardner M.,
    9. Choe T.
    Real-Time PCR Detection of Burkholderia cepacia in Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination. PDA J. Pharm. Sci. Technol. 2018, 72 (1), 73–80.
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. Ahn Y.,
    2. Gibson B.,
    3. Williams A. J.,
    4. Alusta P.,
    5. Buzatu D. A.,
    6. Lee Y.-J.,
    7. Lipuma J.,
    8. Hussong D.,
    9. Marasa B.,
    10. Cerniglia C. E.
    A Comparison of Culture-Based, Real-Time PCR, Droplet Digital PCR and Flow Cytometric Methods for the Detection of Burkholderia cepacia Complex in Nuclease-Free Water and Antiseptics. J. Ind. Microbiol. Biotechnol. 2020, 47 (6–7), 475–484.
    OpenUrl
  45. 45.↵
    1. Daddy Gaoh S.,
    2. Kweon O.,
    3. Lee Y.-J.,
    4. LiPuma J. J.,
    5. Hussong D.,
    6. Marasa B.,
    7. Ahn Y.
    Loop-Mediated Isothermal Amplification (LAMP) Assay for Detecting Burkholderia cepacia Complex in Non-Sterile Pharmaceutical Products. Pathogens 2021, 10 (9), 1071.
    OpenUrl
  46. 46.↵
    1. Gil R.,
    2. Silva F. J.,
    3. Peretó J.,
    4. Moya A.
    Determination of the Core of a Minimal Bacterial Gene Set. Microbiol. Mol. Biol. Rev. 2004, 68 (3), 518–537.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Jimenez L.,
    2. Smalls S.
    Molecular Detection of Burkholderia cepacia in Toiletry, Cosmetic, and Pharmaceutical Raw Materials and Finished Products. J. AOAC Int. 2000, 83 (4), 963–966.
    OpenUrlPubMed
  48. 48.↵
    1. Sandle T.
    Ready for the Count? Back-to-Basics Review of Microbial Colony Counting. J. GXP Compliance 2020, 24 (1), 1–10.
    OpenUrl
  49. 49.
    1. Depoorter E.,
    2. De Canck E.,
    3. Peeters C.,
    4. Wieme A. D.,
    5. Cnockaert M.,
    6. Zlosnik J. E. A.,
    7. LiPuma J. J.,
    8. Coenye T.,
    9. Vandamme P.
    Burkholderia cepacia Complex Taxon K: Where to Split? Front. Microbiol. 2020, 11, 1594.
    OpenUrlCrossRef
  50. 50.
    1. Horsman M. E.,
    2. Marous D. R.,
    3. Li R.,
    4. Oliver R. A.,
    5. Byun B.,
    6. Emrich S. J.,
    7. Boggess B.,
    8. Townsend C. A.,
    9. Mobashery S.
    Whole-Genome Shotgun Sequencing of Two β-Proteobacterial Species in Search of the Bulgecin Biosynthetic Cluster. ACS Chem. Biol. 2017, 12 (10), 2552–2557.
    OpenUrlCrossRef
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 77 (4)
PDA Journal of Pharmaceutical Science and Technology
Vol. 77, Issue 4
July/August 2023
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Design, Development, and Validation of a Culture-Independent Nucleic Acid Diagnostics Method for the Rapid Detection and Quantification of the Burkholderia cepacia Complex in Water with an Equivalence to ISO/TS 12869:2019
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Design, Development, and Validation of a Culture-Independent Nucleic Acid Diagnostics Method for the Rapid Detection and Quantification of the Burkholderia cepacia Complex in Water with an Equivalence to ISO/TS 12869:2019
Huong Duong, Shannon Fullbrook, Kate Reddington, Elizabeth Minogue, Thomas Barry
PDA Journal of Pharmaceutical Science and Technology Jul 2023, 77 (4) 296-310; DOI: 10.5731/pdajpst.2021.012728

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Design, Development, and Validation of a Culture-Independent Nucleic Acid Diagnostics Method for the Rapid Detection and Quantification of the Burkholderia cepacia Complex in Water with an Equivalence to ISO/TS 12869:2019
Huong Duong, Shannon Fullbrook, Kate Reddington, Elizabeth Minogue, Thomas Barry
PDA Journal of Pharmaceutical Science and Technology Jul 2023, 77 (4) 296-310; DOI: 10.5731/pdajpst.2021.012728
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Conflict of Interests Declaration
    • Acknowledgements
    • Appendix: Supplementary Material
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • Practical application of setting up an annual Contamination Control Strategy (CCS) assessment
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
Show more Technology/Application

Similar Articles

Keywords

  • Burkholderia cepacia complex
  • Finished pharmaceutical product recalls
  • Non-sterile aqueous pharmaceutical products
  • Water for manufacturing
  • Culture-independent
  • Nucleic acid diagnostics
  • Quantitative polymerase chain reaction
  • ISO/TS 12869:2019

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire