Abstract
A robust environmental monitoring program is essential to properly estimate and identify microorganisms in cleanrooms, ensuring that microbial contamination remains acceptably low and that a good state of control is maintained in the manufacturing areas. The incubation conditions are important to support optimal microbial recoveries, considering that there is no single culture medium, temperature, and incubation time that can recover all microorganisms. In particular, molds are quite sensitive microorganisms, and some species may have very specific nutritional and environmental needs. In this study, a two-phase approach was used to identify a single incubation–temperature approach that could recover most of the cleanroom microbial flora, with a focus on molds. Phase 1 included a growth promotion study performed in the laboratory using pharmacopeial and in-house strains, comparing different media (Sabouraud Dextrose Agar [SDA] and Tryptone Soy Agar [TSA]) at single or dual incubation-temperature approaches for 5 or 6 days. Phase 2 was based on an in-situ study in which sampling was performed in different areas of a pharmaceutical facility and the recoveries at different incubation conditions were compared. In addition, extension studies of Phase 1 and Phase 2 were performed to get a better understanding of growth requirements for in-house molds. The results showed that an incubation on TSA at 25°C–30°C for 3–4 days was able to recover most tested microorganisms in Phase 1 and a large variety of microorganisms in Phase 2, indicating that the single incubation-temperature is an optimal approach for the recovery of microorganisms in cleanrooms. Exceptions were noted for one strain of the species Cutibacterium acnes, a microaerophilic bacterium for which anaerobiosis and higher temperatures were needed, and two mold strains (Sistotrema brinkmannii and Stereum hirsutum), indicating that those molds required a specific media (SDA) for their proliferation. The results showed that TSA incubated at the single or dual incubation-temperature approach cannot compensate for the absence of SDA for some environmental molds that may be atypical in cleanrooms. Therefore, in addition to TSA, certain monitoring with SDA at, for example, cleanroom entrance points may be beneficial to recover molds with very specific nutritional requirements.
- Cleanroom
- Environmental monitoring
- Incubation temperature and time
- Cultivation media
- Microorganisms
- Molds
- © PDA, Inc. 2024
PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.
If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing.
Full issue PDFs are for PDA members only.
Note to pda.org users
The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.