Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Review ArticleReview

A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management

Maria Ana Martins da Cruz Borges Batalha, Daniel Alexandre Marques Pais, Rui Alexandre Estrela de Almeida and Ângela Sofia Gomes Martinho
PDA Journal of Pharmaceutical Science and Technology September 2024, 78 (5) 604-612; DOI: https://doi.org/10.5731/pdajpst.2023.012922
Maria Ana Martins da Cruz Borges Batalha
Valgenesis Portugal, Lda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: maria.batalha@valgenesis.com
Daniel Alexandre Marques Pais
Valgenesis Portugal, Lda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rui Alexandre Estrela de Almeida
Valgenesis Portugal, Lda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ângela Sofia Gomes Martinho
Valgenesis Portugal, Lda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. McCulloch W. S.,
    2. Pitts W.
    A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5 (4), 115–133. https://doi.org/10.1007/BF02478259.
    OpenUrlCrossRef
  2. 2.↵
    1. Turing A.
    I.—Computing Machinery and Intelligence. Mind 1950, LIX (236), 433–460.
  3. 3.↵
    1. Goodfellow I.,
    2. Bengio Y.,
    3. Courville A.
    Deep Learning, MIT Press, 2016.
  4. 4.↵
    1. Flam S.
    Machine Learning in Healthcare. Foresee Medical Web site. https://www.foreseemed.com/blog/machine-learning-in-healthcare (accessed August 8, 2023).
  5. 5.↵
    1. Liu Q.,
    2. Huang R.,
    3. Hsieh J.,
    4. Zhu H.,
    5. Tiwari M.,
    6. Liu G.,
    7. Jean D.,
    8. ElZarrad M. K.,
    9. Fakhouri T.,
    10. Berman S.,
    11. Dunn B.,
    12. Diamond M. C.,
    13. Huang S.-M.
    Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development From 2016 to 2021. Clin. Pharmacol. Ther. 2023, 113 (4), 771–774. https://doi.org/10.1002/cpt.2668.
    OpenUrlPubMed
  6. 6.↵
    1. Manzano T.,
    2. Langer G.
    Getting Ready for Pharma 4.0. Data Integrity in Cloud and Big Data Applications. Pharm. Eng. 2018, 72–79.
  7. 7.↵
    1. Herwig C.,
    2. Woelbeling C.,
    3. Zimmer T.
    A Holistic Approach to Production Control from Industry 4.0 to Pharma 4.0. Pharm. Eng. 2017, 37 (3), 44–49.
    OpenUrl
  8. 8.↵
    U.S. Food and Drug Administration. Data Integrity and Compliance with CGMP Guidance for Industry. 2016. https://www.fda.gov/files/drugs/published/Data-Integrity-and-Compliance-With-Current-Good-Manufacturing-Practice-Guidance-for-Industry.pdf (accessed August 8, 2023).
  9. 9.↵
    U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed August 1, 2023).
  10. 10.↵
    1. Muehlemann N.
    ML-Based Population Selection and Enrichment in Drug Development. Biopharm. Rep. 2023, 30 (I), 16–22.
    OpenUrl
  11. 11.↵
    U.S. Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). 2019. https://www.fda.gov/media/122535/download (accessed August 2, 2023).
  12. 12.↵
    U.S. Food and Drug Administration. Good Machine Learning Practice for Medical Device Development: Guiding Principles. 2021. https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles (accessed August 3, 2023).
  13. 13.↵
    U.S. Food and Drug Administration. Using Artificial Intelligence & Machine Learning in the Development of Drug and Biological Products - Discussion Paper and Request for Feedback. 2023. https://www.fda.gov/media/167973/download?attachment (accessed August 2, 2023).
  14. 14.↵
    1. Liu Q.,
    2. Zhu H.,
    3. Liu C.,
    4. Jean D.,
    5. Huang S.-M.,
    6. ElZarrad M. K.,
    7. Blumenthal G.,
    8. Wang Y.
    Application of Machine Learning in Drug Development and Regulation: Current Status and Future Potential. Clin. Pharmacol. Ther. 2020, 107 (4), 726–729. https://doi.org/10.1002/cpt.1771.
    OpenUrlPubMed
  15. 15.↵
    1. Samson Y.
    ALCOA+ - What Does It Mean? https://www.gmp-compliance.org/gmp-news/alcoa-what-does-it-mean (accessed November 9, 2023).
  16. 16.↵
    Ensuring Safe, Secure, and Trustworthy AI. 2023. https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf (accessed August 1, 2023).
  17. 17.↵
    The White House. FACT SHEET: Biden-Harris Administration Secures Voluntary Commitments from Leading Artificial Intelligence Companies to Manage the Risks Posed by AI. https://www.whitehouse.gov/briefing-room/statements-releases/2023/07/21/fact-sheet-biden-harris-administration-secures-voluntary-commitments-from-leading-artificial-intelligence-companies-to-manage-the-risks-posed-by-ai/ (accessed August 1, 2023).
  18. 18.↵
    1. Jumper J.,
    2. Evans R.,
    3. Pritzel A.,
    4. Green T.,
    5. Figurnov M.,
    6. Ronneberger O.,
    7. Tunyasuvunakool K.,
    8. Bates R.,
    9. Žídek A.,
    10. Potapenko A.,
    11. Bridgland A.,
    12. Meyer C.,
    13. Kohl S. A. A.,
    14. Ballard A. J.,
    15. Cowie A.,
    16. Romera-Paredes B.,
    17. Nikolov S.,
    18. Jain R.,
    19. Adler J.,
    20. Back T.,
    21. Petersen S.,
    22. Reiman D.,
    23. Clancy E.,
    24. Zielinski M.,
    25. Steinegger M.,
    26. Pacholska M.,
    27. Berghammer T.,
    28. Bodenstein S.,
    29. Silver D.,
    30. Vinyals O.,
    31. Senior A. W.,
    32. Kavukcuoglu K.,
    33. Kohli P.,
    34. Hassabis D.
    Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Zhavoronkov A.,
    2. Vanhaelen Q.,
    3. Oprea T. I.
    Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology? Clin. Pharmacol. Ther. 2020, 107 (4), 780–785. https://doi.org/10.1002/cpt.1795.
    OpenUrlPubMed
  20. 20.↵
    1. Kadurin A.,
    2. Aliper A.,
    3. Kazennov A.,
    4. Mamoshina P.,
    5. Vanhaelen Q.,
    6. Khrabrov K.,
    7. Zhavoronkov A.
    The Cornucopia of Meaningful Leads: Applying Deep Adversarial Autoencoders for New Molecule Development in Oncology. Oncotarget 2017, 8 (7), 10883–10890. https://doi.org/10.18632/oncotarget.14073.
    OpenUrlPubMed
  21. 21.↵
    1. Bailly M.,
    2. Mieczkowski C.,
    3. Juan V.,
    4. Metwally E.,
    5. Tomazela D.,
    6. Baker J.,
    7. Uchida M.,
    8. Kofman E.,
    9. Raoufi F.,
    10. Motlagh S.,
    11. Yu Y.,
    12. Park J.,
    13. Raghava S.,
    14. Welsh J.,
    15. Rauscher M.,
    16. Raghunathan G.,
    17. Hsieh M.,
    18. Chen Y.-L.,
    19. Nguyen H. T.,
    20. Nguyen N.,
    21. Cipriano D.,
    22. Fayadat-Dilman L.
    Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. mAbs 2020, 12 (1), https://doi.org/10.1080/19420862.2020.1743053.
  22. 22.↵
    1. Pais D. A. M.,
    2. Mayer J.-P. A.,
    3. Felderer K.,
    4. Batalha M. B.,
    5. Eichner T.,
    6. Santos S. T.,
    7. Kumar R.,
    8. Silva S. D.,
    9. Kaufmann H.
    Holistic in Silico Developability Assessment of Novel Classes of Small Proteins Using Publicly Available Sequence-Based Predictors. 2023, 11.10.566515. bioRXiv. https://doi.org/10.1101/2023.11.10.566515.
  23. 23.↵
    1. Zhavoronkov A.,
    2. Ivanenkov Y. A.,
    3. Aliper A.,
    4. Veselov M. S.,
    5. Aladinskiy V. A.,
    6. Aladinskaya A. V.,
    7. Terentiev V. A.,
    8. Polykovskiy D. A.,
    9. Kuznetsov M. D.,
    10. Asadulaev A.,
    11. Volkov Y.,
    12. Zholus A.,
    13. Shayakhmetov R. R.,
    14. Zhebrak A.,
    15. Minaeva L. I.,
    16. Zagribelnyy B. A.,
    17. Lee L. H.,
    18. Soll R.,
    19. Madge D.,
    20. Xing L.,
    21. Guo T.,
    22. Aspuru-Guzik A.
    Deep Learning Enables Rapid Identification of Potent DDR1 Kinase Inhibitors. Nat. Biotechnol. 2019, 37 (9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Bader J.,
    2. Narayanan H.,
    3. Arosio P.,
    4. Leroux J.-C.
    Improving Extracellular Vesicles Production through a Bayesian Optimization-Based Experimental Design. Eur. J. Pharm. Biopharm. 2023, 182, 103–114. https://doi.org/10.1016/j.ejpb.2022.12.004.
    OpenUrlPubMed
  25. 25.↵
    1. Narayanan H.,
    2. Dingfelder F.,
    3. Condado Morales I.,
    4. Patel B.,
    5. Heding K. E.,
    6. Bjelke J. R.,
    7. Egebjerg T.,
    8. Butté A.,
    9. Sokolov M.,
    10. Lorenzen N.,
    11. Arosio P.
    Design of Biopharmaceutical Formulations Accelerated by Machine Learning. Mol. Pharmaceutics 2021, 18 (10), 3843–3853. https://doi.org/10.1021/acs.molpharmaceut.1c00469.
    OpenUrl
  26. 26.↵
    1. Bayer B.,
    2. Striedner G.,
    3. Duerkop M.
    Hybrid Modeling and Intensified DoE: An Approach to Accelerate Upstream Process Characterization. Biotechnol. J. 2020, 15 (9), 2000121.
    OpenUrl
  27. 27.↵
    U.S. Food and Drug Administration. Process Validation: General Principles and Practices. 2011. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/process-validation-general-principles-and-practices (accessed August 7, 2023).
  28. 28.↵
    1. Marschall L.,
    2. Taylor C.,
    3. Zahel T.,
    4. Kunzelmann M.,
    5. Wiedenmann A.,
    6. Presser B.,
    7. Studts J.,
    8. Herwig C.
    Specification-Driven Acceptance Criteria for Validation of Biopharmaceutical Processes. Front. Bioeng. Biotechnol. 2022, 10. https://doi.org/10.3389/fbioe.2022.1010583.
  29. 29.↵
    International Council for Harmonisation. Quality Guideline Q8(R2) on Pharmaceutical Development. 2009. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf (accessed August 8, 2023).
  30. 30.↵
    International Council for Harmonisation. Harmonised Guideline Q9(R1): Quality Risk Management. 2023. https://database.ich.org/sites/default/files/ICH_Q9%28R1%29_Guideline_Step4_2023_0126_0.pdf (accessed August 8, 2023)
  31. 31.↵
    1. Vuolo M.,
    2. Margetts D.
    Breaking with Tradition: Laying the Foundation for Validation 4.0. Pharm. Eng. 2021.
  32. 32.↵
    1. Adhibhatta S.,
    2. DiMartino M.,
    3. Falcon R.,
    4. Haman E.,
    5. Legg K.,
    6. Payne R.,
    7. Pipkins K.,
    8. Zamamiri A.
    Continued Process Verification (CPV) Signal Responses in Biopharma. Pharm. Eng. 2017.
  33. 33.↵
    1. Huang J.,
    2. O’Connor T.,
    3. Ahmed K.,
    4. Chatterjee S.,
    5. Garvin C.,
    6. Ghosh K.,
    7. Ierapetritou M.,
    8. Jeffers M.,
    9. Pla D. L.,
    10. Lee S. L.,
    11. Lovett D.,
    12. Lyngberg O.,
    13. Mack J.,
    14. McManus E.,
    15. Romero‐Torres S.,
    16. Undey C.,
    17. Venkatasubramanian V.,
    18. Warman M.
    AIChE PD2M Advanced Process Control Workshop ‐ Moving APC Forward in the Pharmaceutical Industry. J. Adv. Manuf. Process. 2021, 3 (1).
  34. 34.↵
    1. Ondracka A.,
    2. Gasset A.,
    3. García-Ortega X.,
    4. Hubmayr D.,
    5. van Wijngaarden J.,
    6. Montesinos-Seguí J. L.,
    7. Valero F.,
    8. Manzano T.
    CPV of the Future: AI-Powered Continued Process Verification for Bioreactor Processes. PDA J. Pharm. Sci. Technol. 2023, 77 (3), 146–165. https://doi.org/10.5731/pdajpst.2021.012665.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Chen Y.,
    2. Yang O.,
    3. Sampat C.,
    4. Bhalode P.,
    5. Ramachandran R.,
    6. Ierapetritou M.
    Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes 2020, 8 (9), 1088. https://doi.org/10.3390/pr8091088.
    OpenUrl
  36. 36.↵
    1. Singh M.,
    2. Fuenmayor E.,
    3. Hinchy E.,
    4. Qiao Y.,
    5. Murray N.,
    6. Devine D.
    Digital Twin: Origin to Future. Appl. Syst. Innovation 2021, 4 (2), 36. https://doi.org/10.3390/asi4020036.
    OpenUrl
  37. 37.↵
    1. Zhao B.,
    2. Li X.,
    3. Sun W.,
    4. Qian J.,
    5. Liu J.,
    6. Gao M.,
    7. Guan X.,
    8. Ma Z.,
    9. Li J.
    BioDT: An Integrated Digital-Twin-Based Framework for Intelligent Biomanufacturing. Processes 2023, 11 (4), 1213. https://doi.org/10.3390/pr11041213.
    OpenUrl
  38. 38.↵
    1. Ghatti S.,
    2. Yurish L. A.,
    3. Shen H.,
    4. Rheuban K.,
    5. B. Enfield K.,
    6. Facteau N. R.,
    7. Engel G.,
    8. Dowdell K.
    Digital Twins in Healthcare: A Survey of Current Methods. Arch. Clin. Biomed. Res. 2023, 7 (3), 365–381. https://doi.org/10.26502/acbr.50170352.
    OpenUrl
  39. 39.↵
    1. Kaplan S.,
    2. Garrick B. J.
    On The Quantitative Definition of Risk. Risk Anal. 1981, 1 (1), 11–27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x.
    OpenUrlCrossRef
  40. 40.↵
    1. Aven T.,
    2. Krohn B. S.
    A New Perspective on How to Understand, Assess and Manage Risk and the Unforeseen. Reliab. Eng. Syst. Saf. 2014, 121, 1–10. https://doi.org/10.1016/j.ress.2013.07.005.
    OpenUrl
  41. 41.↵
    1. Niesen T.,
    2. Houy C.,
    3. Fettke P.,
    4. Loos P.
    Towards an Integrative Big Data Analysis Framework for Data-Driven Risk Management in Industry 4.0. 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, 2016, pp 5065–5074. https://doi.org/10.1109/HICSS.2016.627.
  42. 42.↵
    1. Silva R. C.,
    2. Almeida R.,
    3. Ferreira P.,
    4. Menezes J.,
    5. Martinho Â.
    Agile, Data-Driven Life Cycle Management for Continuous Manufacturing. Pharm. Eng. 2023.
  43. 43.↵
    1. Paltrinieri N.,
    2. Comfort L.,
    3. Reniers G.
    Learning about Risk: Machine Learning for Risk Assessment. Saf. Sci. 2019, 118, 475–486. https://doi.org/10.1016/j.ssci.2019.06.001.
    OpenUrl
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 78 (5)
PDA Journal of Pharmaceutical Science and Technology
Vol. 78, Issue 5
September/October 2024
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management
Maria Ana Martins da Cruz Borges Batalha, Daniel Alexandre Marques Pais, Rui Alexandre Estrela de Almeida, Ângela Sofia Gomes Martinho
PDA Journal of Pharmaceutical Science and Technology Sep 2024, 78 (5) 604-612; DOI: 10.5731/pdajpst.2023.012922

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management
Maria Ana Martins da Cruz Borges Batalha, Daniel Alexandre Marques Pais, Rui Alexandre Estrela de Almeida, Ângela Sofia Gomes Martinho
PDA Journal of Pharmaceutical Science and Technology Sep 2024, 78 (5) 604-612; DOI: 10.5731/pdajpst.2023.012922
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Regulatory Context of AI and ML in Healthcare
    • AI and ML for Early Drug Development and Process Design
    • AI and ML for Process Performance Qualification
    • AI and ML for Continued Process Verification
    • The Use of Digital Twins Throughout the Product Life Cycle
    • AI and ML for Risk Assessment Throughout the Product Life Cycle
    • Final Remarks
    • Conflict of Interest Declaration
    • Footnotes
    • References
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Risk Assessment and Risk-Based Approach Review of Pre-Use/Post-Sterilization Integrity Testing (PUPSIT)
  • Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
Show more Review

Similar Articles

Keywords

  • Life cycle management
  • Artificial Intelligence
  • machine learning
  • Pharma 4.0
  • Digitalization
  • Pharma and biopharma

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire