Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Article CommentaryCommentary

Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing

Vaibhav Deokar, Alok Sharma and Subrahmanyam M. Volety
PDA Journal of Pharmaceutical Science and Technology March 2025, 79 (2) 218-235; DOI: https://doi.org/10.5731/pdajpst.2023.012873
Vaibhav Deokar
Biotechnology Division, Lupin Limited, Lupin Research Park, 46/47A, Nande Village, Mulshi Taluka, Pune 412115, Maharashtra, India; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alok Sharma
Biotechnology Division, Lupin Limited, Lupin Research Park, 46/47A, Nande Village, Mulshi Taluka, Pune 412115, Maharashtra, India; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Subrahmanyam M. Volety
Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (Deemed University), Manipal 576104, Karnataka, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    Global Monoclonal Antibodies (Mabs) Market Data and Industry Growth Analysis. https://www.thebusinessresearchcompany.com/report/monoclonal-antibodies-global-market-report (accessed January 17, 2023).
  2. 2.↵
    Information on approval of new antibody. https://www.antibodysociety.org/ (accessed January 17, 2023).
  3. 3.↵
    Information on approval of new antibody. https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases (accessed January 17, 2023).
  4. 4.↵
    Information regarding antibody concentration and formulation composition for newly approved antibody in European Public Assessment Report (EPAR). https://www.ema.europa.eu/en/medicines/human (accessed January 17, 2023).
  5. 5.↵
    Information on subcutaneous formulation for Trastuzumab, Herceptin SC. https://www.fda.gov//drugs/drug-approvals-and-databases/fda-approves-new-formulation-herceptin-subcutaneous-use (accessed March 5, 2020).
  6. 6.↵
    1. Yang Y.,
    2. Velayudhan A.,
    3. Thornhill N. F.,
    4. Farid S. S.
    Multi-Criteria Manufacturability Indices for Ranking High-Concentration Monoclonal Antibody Formulations. Biotechnol. Bioeng. 2017, 114 (9), 2043–2056.
    OpenUrlCrossRef
  7. 7.↵
    1. Drewe E.,
    2. Powell R. J.
    Clinically Useful Monoclonal Antibodies in Treatment. J. Clin. Pathol. 2002, 55 (2), 81–85.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Shieu W.,
    2. Stauch O. B.,
    3. Maa Y.-F.
    Filling of High-Concentration Monoclonal Antibody Formulations into Pre-Filled Syringes: Investigating Formulation-Nozzle Interactions to Minimize Nozzle Clogging. PDA J. Pharm. Sci. Technol. 2015, 69 (3), 417–426.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Sifniotis V.,
    2. Cruz E.,
    3. Eroglu B.,
    4. Kayser V.
    Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies 2019, 8 (2), 36.
    OpenUrlPubMed
  10. 10.↵
    1. Shieu W.,
    2. Lamar D.,
    3. Stauch O. B.,
    4. Maa Y.-F.
    Filling of High-Concentration Monoclonal Antibody Formulations: Investigating Underlying Mechanisms That Affect Precision of Low-Volume Fill by Peristaltic Pump. PDA J. Pharm. Sci. Technol. 2016, 70 (2), 143–156.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Wang S. S.,
    2. Yan Y.,
    3. Ho K.
    US FDA Approved Therapeutic Antibodies With High-Concentration Formulation: Summaries and Perspectives. Antibody Ther. 2021, 4 (4), 262–272.
    OpenUrl
  12. 12.↵
    1. Collins D. S.,
    2. Sánchez-Félix M.,
    3. Badkar A. V.,
    4. Mrsny R.
    Accelerating the Development of Novel Technologies and Tools for Subcutaneous Delivery of Therapeutics. J. Controlled Release 2020, 321, 475–482. (May
    OpenUrlPubMed
  13. 13.↵
    1. Holstein M.,
    2. Hung J.,
    3. Feroz H.,
    4. Ranjan S.,
    5. Du C.,
    6. Ghose S.,
    7. Li Z. J.
    Strategies for High-Concentration Drug Substance Manufacturing to Facilitate Subcutaneous Administration: A Review. Biotechnol. Bioeng. 2020, 117 (11), 3591–3606.
    OpenUrl
  14. 14.↵
    1. Jiskoot W.,
    2. Hawe A.,
    3. Menzen T.,
    4. Volkin D. B.,
    5. Crommelin D. J. A.
    Ongoing Challenges to Develop High Concentration Monoclonal Antibody-Based Formulations for Subcutaneous Administration. Quo Vadis? J. Pharm. Sci. 2022, 111 (4), 861–867.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Shukla A. A.,
    2. Wolfe L. S.,
    3. Mostafa S. S.,
    4. Norman C.
    Evolving Trends in mAbs Production Processes. Bioeng. Transl. Med. 2017, 2 (1), 58–69.
    OpenUrlPubMed
  16. 16.↵
    1. Hanslip S.,
    2. Desai K. G.,
    3. Palmer M.,
    4. Kemp I.,
    5. Bell S.,
    6. Schofield P.,
    7. Varma P.,
    8. Roche F.,
    9. Colandene J. D.,
    10. Nesta D. P.
    Syringe Filling of a High-Concentration mAb Formulation: Experimental, Theoretical, and Computational Evaluation of Filling Process Parameters That Influence the Propensity for Filling Needle Clogging. J. Pharm. Sci. 2019, 108 (3), 1130–1138.
    OpenUrlPubMed
  17. 17.↵
    1. Desai K. G.,
    2. Colandene J. D.,
    3. Gidh A.,
    4. Hanslip S.,
    5. Rastelli M.
    Syringe Filling of High-Concentration mAb Products Using Peristaltic Pump-Based Mechanism: Challenges and Mitigation Strategies. J. Pharm. Sci. 2022, 111 (3), 562–576.
    OpenUrlPubMed
  18. 18.↵
    1. Kollár É.,
    2. Balázs B.,
    3. Tari T.,
    4. Siró I.
    Development Challenges of High Concentration Monoclonal Antibody Formulations. Drug Discovery Today: Technol. 2020, 37, 31–40.
    OpenUrl
  19. 19.↵
    1. Johnson B.,
    2. Rostovtsev A.
    High Concentration Biologic Formulations: Challenges and Solutions. Drug Discovery Dev. [Online] June 29, 2017, https://www.drugdiscoverytrends.com/high-concentration-biologic-formulations-challenges-and-solutions/ (accessed June 29, 2017).
  20. 20.↵
    SIELC, Inc. New Mixed-Mode HILIC - Advances in Retention Control and Selectivity, September 2007 Newsletter. https://www.sielc.com/wp-content/uploads/2015/11/SIELC_September_2007.pdf (accessed December 19, 2019).
  21. 21.↵
    1. Bhandare P.,
    2. Madhavan P.,
    3. Rao B. M.,
    4. Rao N. S.
    Determination of Amino Acid without Derivatization by Using HPLC - HILIC Column. J. Chem. Pharm. Res. 2010, 2 (2), 372–380.
    OpenUrl
  22. 22.↵
    1. Yadav S.,
    2. Shire S. J.,
    3. Kalonia D. S.
    Viscosity Behavior of High-Concentration Monoclonal Antibody Solutions: Correlation with Interaction Parameter and Electroviscous Effects. J. Pharm. Sci. 2012, 101 (3), 998–1011.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Shire S. J.
    Strategies to Deal with Challenges of Developing High-Concentration Subcutaneous (SC) Formulations for Monoclonal Antibodies (mAbs). In: Monoclonal Antibodies: Meeting the Challenges in Manufacturing, Formulation, Delivery and Stability of Final Drug Product; Woodhead Publishing: Cambridge, 2015; pp 139–190.
  24. 24.↵
    1. Appelblad P.,
    2. Jonsson T.,
    3. Pontén E.,
    4. Jiang W.
    A Practical Guide to HILIC Including ZIC®-HILIC Applications; MerckSeQuant AB: Darmstadt, Germany, 2009; pp 1–33.
  25. 25.↵
    1. Deokar V.,
    2. Sharma A.,
    3. Mody R.,
    4. Volety S. M.
    Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. J. Pharm. Sci. 2020, 109 (12), 3579–3589.
    OpenUrlPubMed
  26. 26.↵
    1. Felsovalyi F.,
    2. Janvier S.,
    3. Jouffray S.,
    4. Soukiassian H.,
    5. Mangiagalli P.
    Silicone-Oil-Based Sub Visible Particles: Their Detection, Interactions, and Regulation in Prefilled Container Closure Systems for Biopharmaceuticals. J. Pharm. Sci. 2012, 101 (12), 4569–4583.
    OpenUrlPubMed
  27. 27.↵
    1. Maa Y,
    2. Nguyen P.
    Method of Spray Freeze Drying Proteins for Pharmaceutical Administration. U.S. Patent 6,284,282 B1, September 4, 2001.
  28. 28.↵
    1. Sonner C.,
    2. Maa Y.-F.,
    3. Lee G.
    Spray-Freeze-Drying for Protein Powder Preparation: Particle Characterization and a Case Study with Trypsinogen Stability. J Pharm Sci 2002, 91 (10), 2122–2139.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Bluemel O.,
    2. Buecheler J. W.,
    3. Rodrigues M. A.,
    4. Geraldes V.,
    5. Hoelzl G.,
    6. Bechtold-Peters K.,
    7. Friess W.
    Cryoconcentration and 3D Temperature Profiles During Freezing of mAb Solutions in Large-Scale PET Bottles and a Novel Scale-Down Device. Pharm. Res. 2020, 37 (9), 179 Aug 30.
    OpenUrlPubMed
  30. 30.↵
    1. Rayfield W. J.,
    2. Kandula S.,
    3. Khan H.,
    4. Tugcu N.
    Impact of Freeze/Thaw Process on Drug Substance Storage of Therapeutics. J. Pharm. Sci. 2017, 106 (8), 1944–1951.
    OpenUrlPubMed
  31. 31.↵
    Merck Millipore Filtration Guide for Durapore filter. Durapore® Membrane Filters - Filter Discs and Membranes. merckmillipore.com (accessed January 17, 2023).
  32. 32.↵
    1. Siew A.
    Delivering High-Concentration Protein Formulations. Pharm. Technol. 2018, 42 (4), 30–33.
    OpenUrl
  33. 33.↵
    1. Prasetyono T. O. H.,
    2. Adhistana P.
    Laboratory Study on Injection Force Measurement on Syringe and Needle Combinations. Malays. J. Med. Sci. 2019, 26 (2), 66–76.
    OpenUrlCrossRef
  34. 34.↵
    International Organization for Standardization. ISO 11040-8:2016 Prefilled syringes — Part 8: Requirements and Test Methods for Finished Prefilled Syringes. https://www.iso.org/standard/66036.html (accessed March 1, 2020).
  35. 35.↵
    1. Wang W.
    Advanced Protein Formulations. Protein Sci. 2015, 24 (7), 1031–1039.
    OpenUrlPubMed
  36. 36.↵
    1. Pabari R. M.,
    2. Ryan B.,
    3. McCarthy C.,
    4. Ramtoola Z.
    Effect of Microencapsulation Shear Stress on the Structural Integrity and Biological Activity of a Model Monoclonal Antibody, Trastuzumab. Pharmaceutics 2011, 3 (3), 510–524.
    OpenUrlCrossRefPubMed
  37. 37.
    1. Das N.
    Commercializing High-Concentration mAbs. BioPharm Int. 2016, 29 (11), 47–49.
    OpenUrl
  38. 38.
    1. Berteau C.,
    2. Filipe-Santos O.,
    3. Wang T.,
    4. Rojas H.,
    5. Granger C.,
    6. Schwarzenbach F.
    Evaluation of the Impact of Viscosity, Injection Volume, and Injection Flow Rate on Subcutaneous Injection Tolerance. Med. Devices: Evidence Res. 2015, 8, 473–484.
    OpenUrl
  39. 39.
    1. Mathaes R.,
    2. Koulov A.,
    3. Joerg S.,
    4. Mahler H-C.
    Subcutaneous Injection Volume of Biopharmaceuticals-Pushing the Boundaries. J. Pharm. Sci. 2016, 105 (8), 2255–2259.
    OpenUrlCrossRefPubMed
  40. 40.
    1. Whitaker N.,
    2. Xiong J.,
    3. Pace S. E.,
    4. Kumar V.,
    5. Middaugh C. R.,
    6. Joshi S. B.,
    7. Volkin D. B.
    A Formulation Development Approach to Identify and Select Stable Ultra-High-Concentration Monoclonal Antibody Formulations With Reduced Viscosities. J. Pharm. Sci. 2017, 106 (11), 3230–3241.
    OpenUrlCrossRefPubMed
  41. 41.
    1. Jezek J.,
    2. Rides M.,
    3. Derham B.,
    4. Moore J.,
    5. Cerasoli E.,
    6. Simler R.,
    7. Perez-Ramirez B.
    Viscosity of Concentrated Therapeutic Protein Compositions. Adv. Drug Delivery Rev. 2011, 63 (13), 1107–1117.
    OpenUrlCrossRefPubMed
  42. 42.
    1. Gikanga B.,
    2. Turok R.,
    3. Hui A.,
    4. Bowen M.,
    5. Stauch O. B.,
    6. Maa Y.-F.
    Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale. PDA J. Pharm. Sci. Technol. 2015, 69 (1), 59–73.
    OpenUrlAbstract/FREE Full Text
  43. 43.
    1. Burnouf T.,
    2. Sayed M. A.,
    3. Radosevich M.,
    4. El-Ekiaby M.
    Comparative Removal of Solvent and Detergent Viral Inactivating Agents from Human Intravenous Immunoglobulin G Preparations Using SDR Hyper D and C18 Sorbents. Anal. Biochem. 2009, 389 (1), 69–73.
    OpenUrlPubMed
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 79 (2)
PDA Journal of Pharmaceutical Science and Technology
Vol. 79, Issue 2
March/April 2025
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
Vaibhav Deokar, Alok Sharma, Subrahmanyam M. Volety
PDA Journal of Pharmaceutical Science and Technology Mar 2025, 79 (2) 218-235; DOI: 10.5731/pdajpst.2023.012873

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Challenges and Solutions to Manufacturing of Low-Viscosity, Ultra-High Concentration IgG1 Drug Products: From Late Downstream Process to Final Fill Finish Processing
Vaibhav Deokar, Alok Sharma, Subrahmanyam M. Volety
PDA Journal of Pharmaceutical Science and Technology Mar 2025, 79 (2) 218-235; DOI: 10.5731/pdajpst.2023.012873
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Material and Methods
    • Discussion
    • Challenges in Manufacturability of High-Concentration IgG1 Drug Product
    • Challenges in the Manufacturability of High-Concentration IgG1 Drug Product
    • Conclusion
    • Supplementary Data
    • Conflict of Interest Declaration
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Retrospective Evaluation of Cycled Resin in Viral Clearance Studies - A Multiple Company Collaboration - Post ICH Q5A(R2) Review
  • Addressing Medical Device Extractables and Leachables via Non-Target Analysis (NTA); The Analytical Evaluation Threshold (AET) and Quantitation
  • Expanding the Use of Moist Heat for Terminal Sterilization
Show more Commentary

Similar Articles

Keywords

  • Ultra-high concentration
  • Low-viscosity
  • Antibody formulation
  • Tangential flow filtration
  • Cryo-concentration
  • Sterile filtration
  • Fill-finish processing

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire