Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleResearch

Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development

Opeyemi O. Ajayi, Jackie L. Cullinan, Innara Basria, Madaisabel Fuentes-Arias, Ashley Osuna-Najarro, Sarah Johnson, Talia Faison and Scott Lute
PDA Journal of Pharmaceutical Science and Technology May 2025, 79 (3) 252-273; DOI: https://doi.org/10.5731/pdajpst.2025-000001.1
Opeyemi O. Ajayi
1Center for Drug Evaluation and Research (CDER), Office of Pharmaceutical Quality (OPQ), Office of Product Quality Assessment III (OPQA III), Division of Product Quality Assessment XIV (DPQA XIV);
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jackie L. Cullinan
2CDER, OPQ, Office of Pharmaceutical Quality Research (OPQR), Division of Pharmaceutical Quality Research VI (DPQR VI); and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Innara Basria
2CDER, OPQ, Office of Pharmaceutical Quality Research (OPQR), Division of Pharmaceutical Quality Research VI (DPQR VI); and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Madaisabel Fuentes-Arias
2CDER, OPQ, Office of Pharmaceutical Quality Research (OPQR), Division of Pharmaceutical Quality Research VI (DPQR VI); and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashley Osuna-Najarro
2CDER, OPQ, Office of Pharmaceutical Quality Research (OPQR), Division of Pharmaceutical Quality Research VI (DPQR VI); and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah Johnson
1Center for Drug Evaluation and Research (CDER), Office of Pharmaceutical Quality (OPQ), Office of Product Quality Assessment III (OPQA III), Division of Product Quality Assessment XIV (DPQA XIV);
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Talia Faison
3CDER, OPQ, Office of Pharmaceutical Manufacturing Assessment (OPMA), Division of Pharmaceutical Manufacturing Assessment VI (DPMA VI)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott Lute
2CDER, OPQ, Office of Pharmaceutical Quality Research (OPQR), Division of Pharmaceutical Quality Research VI (DPQR VI); and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Scott.Lute@fda.hhs.gov
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    FDA-Guidance Investigational New Drug (IND) Application. https://www.fda.gov/drugs/types-applications/investigational-new-drug-ind-application (accessed 02/02/2024).
  2. 2.↵
    1. Barone P. W.,
    2. Wiebe M. E.,
    3. Leung J. C.,
    4. Hussein I. T. M.,
    5. Keumurian F. J.,
    6. Bouressa J.,
    7. Brussel A.,
    8. Chen D.,
    9. Chong M.,
    10. Dehghani H.,
    11. Gerentes L.,
    12. Gilbert J.,
    13. Gold D.,
    14. Kiss R.,
    15. Kreil T. R.,
    16. Labatut R.,
    17. Li Y.,
    18. Müllberg J.,
    19. Mallet L.,
    20. Menzel C.,
    21. Moody M.,
    22. Monpoeho S.,
    23. Murphy M.,
    24. Plavsic M.,
    25. Roth N. J.,
    26. Roush D.,
    27. Ruffing M.,
    28. Schicho R.,
    29. Snyder R.,
    30. Stark D.,
    31. Zhang C.,
    32. Wolfrum J.,
    33. Sinskey A. J.,
    34. Springs S. L.
    Viral Contamination in Biologic Manufacture and Implications for Emerging Therapies. Nat. Biotechnol. 2020, 38 (5), 563–572.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Merten O.-W.
    Virus Contaminations of Cell Cultures – A Biotechnological View. Cytotechnology 2002, 39 (2), 91–116.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Lubiniecki A. S.
    Evolution of Approaches to Viral Safety Issues for Biological Products. PDA J. Pharm. Sci. Technol. 2011, 65 (6), 547–556.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. Adamson S. R.
    Experiences of Virus, Retrovirus and Retrovirus-like Particles in Chinese Hamster Ovary (CHO) and Hybridoma Cells Used for Production of Protein Therapeutics. Dev. Biol. Stand. 1998, 93, 89–96.
    OpenUrlPubMedWeb of Science
  6. 6.↵
    1. Victoria J. G.,
    2. Wang C.,
    3. Jones M. S.,
    4. Jaing C.,
    5. McLoughlin K.,
    6. Gardner S.,
    7. Delwart E. L.
    Viral Nucleic Acids in Live-Attenuated Vaccines: Detection of Minority Variants and an Adventitious Virus. J. Virol. 2010, 84 (12), 6033–6040.
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. Shah K.,
    2. Nathanson N.
    Human Exposure to SV40: Review and Comment. Am. J. Epidemiol. 1976, 103 (1), 1–12.
    OpenUrlPubMedWeb of Science
  8. 8.↵
    1. Weinberg P. D.,
    2. Hounshell J.,
    3. Sherman L. A.,
    4. Godwin J.,
    5. Ali S.,
    6. Tomori C.,
    7. Bennett C. L.
    Legal, Financial, and Public Health Consequences of HIV Contamination of Blood and Blood Products in the 1980s and 1990s. Ann. Intern. Med. 2002, 136 (4), 312–319.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    International Conference for Harmonisation, Harmonised Guideline Q5A(R2) Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. ICH: Geneva, 2023.
  10. 10.↵
    1. Miesegaes G.,
    2. Lute S.,
    3. Brorson K.
    Analysis of Viral Clearance Unit Operations for Monoclonal Antibodies. Biotechnol. Bioeng. 2010, 106 (2), 238–246.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Ajayi O. O.,
    2. Johnson S. A.,
    3. Faison T.,
    4. Azer N.,
    5. Cullinan J. L.,
    6. Dement-Brown J.,
    7. Lute S. C.
    An Updated Analysis of Viral Clearance Unit Operations for Biotechnology Manufacturing. Curr. Res. Biotechnol. 2022, 4, 190–202.
    OpenUrl
  12. 12.↵
    U.S. Food and Drug Administration. Pharmaceutical Quality - Chemistry, Manufacturing & Controls. | PQ/CMC. https://www.fda.gov/industry/fda-data-standards-advisory-board/pharmaceutical-quality-chemistry-manufacturing-controls-pqcmc (accessed 10/01/2024).
  13. 13.↵
    1. Miesegaes G.,
    2. Lute S.,
    3. Aranha H.,
    4. Brorson K.
    Virus Retentive Filters. In Encyclopedia of Industrial Biotechnology; Wiley, 2009.
  14. 14.↵
    1. Pan C.,
    2. Becerra-Arteaga A.,
    3. Tran B.,
    4. Chinn M.,
    5. Wang H.,
    6. Chen Q.,
    7. Lutz H.,
    8. Zhang M.
    Characterizing and Enhancing Virus Removal by Protein A Chromatography. Biotechnol. Bioeng. 2019, 116 (4), 846–856.
    OpenUrl
  15. 15.↵
    1. Brorson K.,
    2. Krejci S.,
    3. Lee K.,
    4. Hamilton E.,
    5. Stein K.,
    6. Xu Y.
    Bracketed Generic Inactivation of Rodent Retroviruses by Low pH Treatment for Monoclonal Antibodies and Recombinant Proteins. Biotechnol. Bioeng. 2003, 82 (3), 321–329.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Johnson S. A.,
    2. Chen S.,
    3. Bolton G.,
    4. Chen Q.,
    5. Lute S.,
    6. Fisher J.,
    7. Brorson K.
    Virus Filtration: A Review of Current and Future Practices in Bioprocessing. Biotechnol. Bioeng. 2021, 119 (3), 743–761.
    OpenUrl
  17. 17.↵
    1. Daya J.,
    2. Cusick V.,
    3. Mattila J.
    Characterization of Ionic Strength for X-MuLV Inactivation by Low pH Treatment for Monoclonal Antibody Purification. Biotechnol. Bioeng. 2023, 120 (6), 1605–1613.
    OpenUrl
  18. 18.↵
    1. Chinniah S.,
    2. Hinckley P.,
    3. Connell-Crowley L.
    Characterization of Operating Parameters for XMuLV Inactivation by Low pH Treatment. Biotechnol. Prog. 2016, 32 (1), 89–97.
    OpenUrl
  19. 19.↵
    1. Mattila J.,
    2. Clark M.,
    3. Liu S.,
    4. Pieracci J.,
    5. Gervais T. R.,
    6. Wilson E.,
    7. Galperina O.,
    8. Li X.,
    9. Roush D.,
    10. Zoeller K.,
    11. Brough H.,
    12. Simpson-Platre C.
    Retrospective Evaluation of Low-pH Viral Inactivation and Viral Filtration Data from a Multiple Company Collaboration. PDA J. Pharm. Sci. Technol. 2016, 70 (3), 293–299.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    European Parliament, Council of the European Union. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2006.
  21. 21.↵
    1. Farcet J.-B.,
    2. Kindermann J.,
    3. Karbiener M.,
    4. Kreil T. R.
    Development of a Triton X-100 Replacement for Effective Virus Inactivation in Biotechnology Processes. Eng. Rep. 2019, 1 (5), e12078.
    OpenUrl
  22. 22.↵
    1. Farcet J.-B.,
    2. Karbiener M.,
    3. Zelger L.,
    4. Kindermann J.,
    5. Kreil T. R.
    Detergent-Mediated Virus Inactivation in Biotechnological Matrices: More than Just CMC. Int. J. Mol. Sci. 2023, 24 (9), 7920.
    OpenUrlPubMed
  23. 23.↵
    1. Conley L.,
    2. Tao Y.,
    3. Henry A.,
    4. Koepf E.,
    5. Cecchini D.,
    6. Pieracci J.,
    7. Ghose S.
    Evaluation of Eco-Friendly Zwitterionic Detergents for Enveloped Virus Inactivation. Biotechnol. Bioeng. 2017, 114 (4), 813–820.
    OpenUrl
  24. 24.↵
    1. Brorson K.,
    2. Lute S.,
    3. Haque M.,
    4. Martin J.,
    5. Sato T.,
    6. Moroe I.,
    7. Morgan M.,
    8. Krishnan M.,
    9. Campbell J.,
    10. Genest P.,
    11. Parrella J.,
    12. Dolan S.,
    13. Martin S.,
    14. Tarrach K.,
    15. Levy R.
    ; PDA Virus Filter Task Force. A Consensus Rating Method for Small Virus-Retentive Filters. II. Method Evaluation. PDA J. Pharm. Sci. Technol. 2008, 62 (5), 334–343.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Roth N. J.,
    2. Dichtelmüller H. O.,
    3. Fabbrizzi F.,
    4. Flechsig E.,
    5. Gröner A.,
    6. Gustafson M.,
    7. Jorquera J. I.,
    8. Kreil T. R.,
    9. Misztela D.,
    10. Moretti E.,
    11. Moscardini M.,
    12. Poelsler G.,
    13. More J.,
    14. Roberts P.,
    15. Wieser A.,
    16. Gajardo R.
    Nanofiltration as a Robust Method Contributing to Viral Safety of Plasma-Derived Therapeutics: 20 Years' Experience of the Plasma Protein Manufacturers. Transfusion 2020, 60 (11), 2661–2674.
    OpenUrl
  26. 26.↵
    1. Roush D.,
    2. Ma J.
    Viral Clearance Using Traditional, Well-Understood Unit Operations Session 1.2: Virus-Retentive Filtration. PDA J. Pharm. Sci. Technol. 2016, 70 (5), 417–427.
    OpenUrlFREE Full Text
  27. 27.↵
    1. Chen D.
    Viral Clearance Using Traditional, Well-Understood Unit Operations (Session I): Virus-Retentive Filtration. PDA J. Pharm. Sci. Technol. 2014, 68 (1), 38–50.
    OpenUrlFREE Full Text
  28. 28.↵
    1. Bolton G. R.,
    2. Spector S.,
    3. Lacasse D.
    Increasing the Capacity of Parvovirus-Retentive Membranes: Performance of the Viresolve Prefilter. Biotechnol. Appl. Biochem. 2006, 43 (Pt 1), 55–63.
    OpenUrlPubMed
  29. 29.↵
    1. Billups M,
    2. Minervini M.,
    3. Holstein M.,
    4. Feroz H.,
    5. Ranjan S.,
    6. Hung J.,
    7. Bao H.,
    8. Li Z. J.,
    9. Ghose S.,
    10. Zydney A. L.
    Role of Membrane Structure on the Filtrate Flux During Monoclonal Antibody Filtration through Virus Retentive Membranes. Biotechnol. Prog. 2022, 38 (2), e3231.
    OpenUrl
  30. 30.↵
    1. LaCasse D.,
    2. Lute S.,
    3. Fiadeiro M.,
    4. Basha J.,
    5. Stork M.,
    6. Brorson K.,
    7. Godavarti R.,
    8. Gallo C.
    Mechanistic Failure Mode Investigation and Resolution of Parvovirus Retentive Filters. Biotechnol. Prog. 2016, 32 (4), 959–970.
    OpenUrl
  31. 31.↵
    1. Leisi R.,
    2. Widmer E.,
    3. Gooch B.,
    4. Roth N. J.,
    5. Ros C.
    Mechanistic Insights into Flow-Dependent Virus Retention in Different Nanofilter Membranes. J. Membr. Sci. 2021, 636, 119548.
    OpenUrl
  32. 32.↵
    1. Lute S.,
    2. Kozaili J.,
    3. Johnson S.,
    4. Kobayashi K.,
    5. Strauss D.
    Development of Small-Scale Models to Understand the Impact of Continuous Downstream Bioprocessing on Integrated Virus Filtration. Biotechnol. Prog. 2020, 36 (3), e2962.
    OpenUrl
  33. 33.↵
    1. Lund L. N.,
    2. Gustavsson P.-E.,
    3. Michael R.,
    4. Lindgren J.,
    5. Nørskov-Lauritsen L.,
    6. Lund M.,
    7. Houen G.,
    8. Staby A.,
    9. St. Hilaire P.M.
    Novel Peptide Ligand with High Binding Capacity for Antibody Purification. J. Chromatogr. A 2012, 1225 158–167.
    OpenUrlPubMed
  34. 34.↵
    1. Hubbard B.
    Viral Clearance by Traditional Operations with Significant Knowledge Gaps (Session II): Protein A Chromatography. PDA J. Pharm. Sci. Technol. 2014, 68 (1), 13–16.
    OpenUrlFREE Full Text
  35. 35.↵
    1. Lute S.,
    2. Norling L.,
    3. Hanson M.,
    4. Emery R.,
    5. Stinson D.,
    6. Padua K.,
    7. Blank G.,
    8. Chen Q.,
    9. Brorson K.
    Robustness of Virus Removal by Protein A Chromatography Is Independent of Media Lifetime. J. Chromatogr. A 2008, 1205 (1-2), 17–25.
    OpenUrlPubMed
  36. 36.↵
    1. Remington M.,
    2. Kelly R.,
    3. Zehmer J.
    Viral Clearance by Protein A, Anion Exchange and Cation Exchange Chromatography Steps. Am. Pharm. Rev. 2015, https://www.americanpharmaceuticalreview.com/Featured-Articles/181836-Viral-Clearance-by-Protein-A-Anion-Exchange-and-Cation-Exchange-Chromatography-Steps/.
  37. 37.↵
    1. Zhang M.,
    2. Miesegaes G. R.,
    3. Lee M.,
    4. Coleman D.,
    5. Yang B.,
    6. Trexler-Schmidt M.,
    7. Norling L.,
    8. Lester P.,
    9. Brorson K. A.,
    10. Chen Q.
    Quality by Design Approach for Viral Clearance by Protein A Chromatography. Biotechnol. Bioeng. 2014, 111 (1), 95–103.
    OpenUrl
  38. 38.↵
    1. Bach J.,
    2. Connell-Crowley L.
    Clearance of the Rodent Retrovirus, XMuLV, by Protein A Chromatography. Biotechnol. Bioeng. 2015, 112 (4), 743–750.
    OpenUrl
  39. 39.↵
    1. Strauss D. M.,
    2. Lute S.,
    3. Tebaykina Z.,
    4. Frey D. D.,
    5. Ho C.,
    6. Blank G. S.,
    7. Brorson K.,
    8. Chen Q.,
    9. Yang B.
    Understanding the Mechanism of Virus Removal by Q Sepharose Fast Flow Chromatography During the Purification of CHO-Cell Derived Biotherapeutics. Biotechnol. Bioeng. 2009, 104 (2), 371–380.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Leisi R.,
    2. Wolfisberg R.,
    3. Nowak T.,
    4. Caliaro O.,
    5. Hemmerle A.,
    6. Roth N. J.,
    7. Ros C.
    Impact of the Isoelectric Point of Model Parvoviruses on Viral Retention in Anion-Exchange Chromatography. Biotechnol. Bioeng. 2021, 118 (1), 116–129.
    OpenUrl
  41. 41.↵
    1. Mi X.,
    2. Bromley E. K.,
    3. Joshi P. U.,
    4. Long F.,
    5. Heldt C. L.
    Virus Isoelectric Point Determination Using Single-Particle Chemical Force Microscopy. Langmuir 2020, 36 (1), 370–378.
    OpenUrlPubMed
  42. 42.↵
    1. Sun Y.,
    2. Yu X.,
    3. Wang X.,
    4. Yuan K.,
    5. Wang G.,
    6. Hu L.,
    7. Zhang G.,
    8. Pei W.,
    9. Wang L.,
    10. Sun C.,
    11. Yang P.
    Bispecific Antibodies in Cancer Therapy: Target Selection and Regulatory Requirements. Acta Pharm. Sin. B 2023, 13 (9), 3583–3597.
    OpenUrlPubMed
  43. 43.↵
    1. Li Y.
    Viral Removal by Column Chromatography in Downstream Processing of Monoclonal Antibodies. Protein Expression Purif. 2022, 198, 106131.
    OpenUrlPubMed
  44. 44.↵
    1. Chen S.-T.,
    2. Xu W.,
    3. Cai K.,
    4. Ferreira G.,
    5. Ranil Wickramasinghe S.,
    6. Qian X.
    Factors Affecting Robustness of Anion Exchange Chromatography: Selective Retention of Minute Virus of Mice Using Membrane Media. J Chromatogr B: Anal. Technol. Biomed. Life Sci. 2022, 1210, 123449.
    OpenUrlPubMed
  45. 45.↵
    1. Hung J.,
    2. Lam S. F.,
    3. Tan Z.,
    4. Choy D.,
    5. Chennamsetty N.,
    6. Lewandowski A.,
    7. Qi W.,
    8. Lynch M.,
    9. Ghose S.,
    10. Li Z. J.
    Impact of Virus-Antibody Interactions on Viral Clearance in Anion Exchange Chromatography. J. Chromatogr. A 2020, 1633, 461635.
    OpenUrlPubMed
  46. 46.↵
    1. Roush D.
    Viral Clearance Using Traditional, Well-Understood Unit Operations (Session I): Anion Exchange Chromatography (AEX). PDA J. Pharm. Sci. Technol. 2014, 68 (1), 23–29.
    OpenUrlFREE Full Text
  47. 47.↵
    1. Connell-Crowley L.,
    2. Larimore E. A.,
    3. Gillespie R.
    Using High Throughput Screening to Define Virus Clearance by Chromatography Resins. Biotechnol. Bioeng. 2013, 110 (7), 1984–1994.
    OpenUrl
  48. 48.↵
    1. Miesegaes G. R.,
    2. Lute S.,
    3. Strauss D. M.,
    4. Read E. K.,
    5. Venkiteshwaran A.,
    6. Kreuzman A.,
    7. Shah R.,
    8. Shamlou P.,
    9. Chen D.,
    10. Brorson K.
    Monoclonal Antibody Capture and Viral Clearance by Cation Exchange Chromatography. Biotechnol. Bioeng. 2012, 109 (8), 2048–2058.
    OpenUrlPubMed
  49. 49.↵
    1. Connell-Crowley L.,
    2. Nguyen T.,
    3. Bach J.,
    4. Chinniah S.,
    5. Bashiri H.,
    6. Gillespie R.,
    7. Moscariello J.,
    8. Hinckley P.,
    9. Dehghani H.,
    10. Vunnum S.,
    11. Vedantham G.
    Cation Exchange Chromatography Provides Effective Retrovirus Clearance for Antibody Purification Processes. Biotechnol. Bioeng. 2012, 109 (1), 157–165.
    OpenUrlPubMed
  50. 50.↵
    1. Masuda Y.,
    2. Tsuda M.,
    3. Hashikawa-Muto C.,
    4. Takahashi Y.,
    5. Nonaka K.,
    6. Wakamatsu K.
    Cation Exchange Chromatography Performed in Overloaded Mode Is Effective in Removing Viruses During the Manufacturing of Monoclonal Antibodies. Biotechnol. Prog. 2019, 35 (5), e2858.
    OpenUrl
  51. 51.↵
    1. Moo-Young M.
    1. Sun Y.,
    2. Shi Q.-H.,
    3. Zhang L.,
    4. Zhao G.-F.,
    5. Liu F.-F.
    2.47 - Adsorption and Chromatography. In Comprehensive Biotechnology, 2nd ed.; Moo-Young M., Ed.; Elsevier: Amsterdam, 2011; Vol. 2, pp 665–679,
    OpenUrl
  52. 52.↵
    1. Ghose S.,
    2. Tao Y.,
    3. Conley L.,
    4. Cecchini D.
    Purification of Monoclonal Antibodies by Hydrophobic Interaction Chromatography Under No-Salt Conditions. mAbs 2013, 5 (5), 795–800.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Johnson S. A.,
    2. Walsh A.,
    3. Brown M. R.,
    4. Lute S. C.,
    5. Roush D. J.,
    6. Burnham M. S.,
    7. Brorson K. A.
    The Step-Wise Framework to Design a Chromatography-Based Hydrophobicity Assay for Viral Particles. J. Chromatogr. B 2017, 1061-1062, 430–437.
    OpenUrl
  54. 54.↵
    1. Cetlin D.,
    2. Lynch M.,
    3. Li J.
    Monoclonal Antibody Aggregate Polish and Viral Clearance Using Hydrophobic-Interaction Chromatography. BioProcess Int. 2019, 17, 11–12.
    OpenUrl
  55. 55.↵
    ASTM International, ASTM E2888- 12(2019) Standard Practice for Process for Inactivation of Rodent Retrovirus by pH. ASTM: West Conshohocken, PA, 2023.
  56. 56.↵
    ASTM International, ASTM E3042-16 Standard Practice for Process Step to Inactivate Rodent Retrovirus with Triton X-100 Treatment. ASTM: West Conshohocken, PA, 2024.
  57. 57.↵
    ASTM International, ASTM E3259-22 Standard Practice for Process to Remove Retroviruses by Small Virus Retentive Filters. ASTM: West Conshohocken, PA, 2023.
  58. 58.↵
    FDA-Guidance Guidance for Industry - Changes to an Approved NDA or ANDA. https://www.fda.gov/drugs/types-applications/investigational-new-drug-ind-application. (accessed 12/02/2024)
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 79 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 79, Issue 3
May/June 2025
  • Table of Contents
  • Index by Author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 13 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
Opeyemi O. Ajayi, Jackie L. Cullinan, Innara Basria, Madaisabel Fuentes-Arias, Ashley Osuna-Najarro, Sarah Johnson, Talia Faison, Scott Lute
PDA Journal of Pharmaceutical Science and Technology May 2025, 79 (3) 252-273; DOI: 10.5731/pdajpst.2025-000001.1

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Analysis of Virus Clearance for Biotechnology Manufacturing Processes from Early to Late Phase Development
Opeyemi O. Ajayi, Jackie L. Cullinan, Innara Basria, Madaisabel Fuentes-Arias, Ashley Osuna-Najarro, Sarah Johnson, Talia Faison, Scott Lute
PDA Journal of Pharmaceutical Science and Technology May 2025, 79 (3) 252-273; DOI: 10.5731/pdajpst.2025-000001.1
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Disclosure
    • Conflict of Interest Declaration
    • Supplemental Figures
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Coring and Fragmentation of Elastomeric Needle Shield in a Pre-Filled Syringe
  • Worldwide Regulatory Reliance: Results of an Executed Chemistry, Manufacturing, and Control Post-Approval Change Pilot
Show more Research

Similar Articles

Keywords

  • Viral safety
  • Virus clearance
  • Low pH inactivation
  • Virus-retentive filtration
  • Chromatography viral clearance
  • Pharmaceutical viral clearance
  • Retrovirus-like particle clearance
  • Safety factor

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire