Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies

Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley and Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: https://doi.org/10.5731/pdajpst.2014.00978
Eva Gefroh
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gefrohe@amgen.com
Houman Dehghani
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan McClure
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa Connell-Crowley
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ganesh Vedantham
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Typical platform processes for biopharmaceutical products derived from animal cell lines include a parvovirus filtration unit operation to provide viral safety assurance of the drug product. The industry has adopted this platform unit operation and gained a wider understanding of its performance attributes, leading to the possibility of streamlined approaches to virus clearance validation. Here, the concept of virus validation on a parvovirus-grade filter with a single worst-case model virus is presented. Several lines of evidence, including published literature and Amgen's own data, support the use of a parvovirus, such as mouse minute virus (MMV), as a worst-case model virus to assess virus removal by parvovirus filters. The evidence presented includes a discussion of the design and manufacture of virus filters with a size exclusion mechanism for removal. Next, the characteristics of different model viruses are compared and a risk assessment on the selection of the relevant model viruses for clearance studies is presented. Finally, a comprehensive summary of literature and Amgen data is provided, comparing the clearance of larger viruses against MMV. Together, this analysis provides a strong scientific rationale for the use of a single, worst-case model virus for assessing virus removal by parvovirus filters, which will ultimately allow for more efficient and streamlined viral clearance study designs.

LAY ABSTRACT: Demonstrating the virus clearance capability of a purification process is an important aspect of biopharmaceutical process development. A key component of the viral safety of the process is the inclusion of a parvovirus-grade filter as an effective and robust virus removal step. Traditional methodologies for viral clearance studies have been based on a conservative, data-intensive approach, but recent trends in the field of virus clearance and process development show evolution towards streamlined and more efficient study designs that are based on understanding the mechanism of viral clearance by downstream unit operations. The publication of scientific datasets and awareness of the underlying mechanisms involved with these unit operations have fueled this trend. Here, the concept of virus validation on a parvovirus-grade filter using a parvovirus as single, worst-case model virus is presented. Multiple lines of evidence are provided to support this proposal, including a review of published literature and Amgen historical data. The adoption of this approach provides benefits in terms of cost savings for executing viral clearance studies, but it also simplifies the necessary dataset and focuses on only supplying value-added information to demonstrate the viral safety of the process.

  • Viral filtration
  • Parvovirus
  • MMV-only
  • Viral clearance
  • © PDA, Inc. 2014
View Full Text

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 3
May/June 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley, Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: 10.5731/pdajpst.2014.00978

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley, Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: 10.5731/pdajpst.2014.00978
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Size Exclusion Mechanism of Virus Filter Retention
    • Selection of Model Viruses for Viral Clearance Studies
    • Datasets Comparing Clearance of Different Model Viruses
    • Conclusions and Recommendations
    • Declarations
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
  • Proceedings of the 2019 Viral Clearance Symposium, Session 4: Viral Clearance Strategy and Process Understanding
  • Proceedings of the 2017 Viral Clearance Symposium, Session 2.1: DSP Unit Operations--Virus Filtration/Inactivation
  • Viral Clearance Using Traditional, Well-Understood Unit Operations Session 1.2: Virus-Retentive Filtration
  • Viral Clearance of Traditional Unit Operations: Virus-Retentive Filtration
  • Session 4: Overall Integrated Viral Clearance and Adventitious Agents Strategy
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • viral filtration
  • Parvovirus
  • MMV-only
  • Viral clearance

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire