Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleTechnology/Application

Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies

Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley and Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: https://doi.org/10.5731/pdajpst.2014.00978
Eva Gefroh
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gefrohe@amgen.com
Houman Dehghani
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan McClure
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa Connell-Crowley
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ganesh Vedantham
Purification Process Development, Amgen Inc., Seattle, WA; and Biosafety Development, Amgen Inc., Seattle, WA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    FDA; ICH. Guidance for Industry. Q5A Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. U.S. Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Center for Biologiscs Evaluation and Research (CBER): Rockville, MD, 1998.
  2. 2.↵
    The European Agency for the Evaluation of Medicinal Products: Human Medicines Evaluation Unit, Committee for Proprietary Medicinal Products (CPMP). Guideline on Virus Safety Evaluation of Biotechnological Investigational Medicinal Products, 2009. CPMP/BWP/398498/2005.
  3. 3.↵
    FDA. Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use. U.S. Department of Health and Human Services, FDA, CBER: Rockville, MD, 1997.
  4. 4.↵
    1. Zhou J. X.,
    2. Solamo F.,
    3. Hong T.,
    4. Shearer M.,
    5. Tressel T.
    Viral clearance using disposable systems in monoclonal antibody commercial downstream processing. Biotechnol. Bioeng. 2008, 100 (3), 488–496.
    OpenUrlPubMed
  5. 5.↵
    1. Shukla A. A.,
    2. Etzel M. R.,
    3. Gadam S
    1. Kundu A.,
    2. Reindel K.
    Evaluation of Viral Clearance in Purification Processes. In Process Scale Bioseparations for the Biopharmaceutical Industry, Shukla A. A., Etzel M. R., Gadam S, Eds.; CRC Press: Boca Raton, FL, 2006; pp 419–448.
  6. 6.↵
    1. Carter J.,
    2. Lutz H.
    An overview of viral filtration in biopharmaceutical manufacturing. Eur. J. Parenter. Sci. 2002, 7(3), 72–78.
    OpenUrl
  7. 7.↵
    1. Meltzer T. H.,
    2. Jornitz M. W.
    1. Levy R. V.,
    2. Phillips M. W.,
    3. Lutz H.
    Filtration and the Removal of Viruses from Biopharmaceuticals. In Filtration in the Biopharmaceutical Industry, Meltzer T. H., Jornitz M. W., Eds.; Dekker: New York, 1998; pp 619–646.
  8. 8.↵
    1. Flickinger M. C.
    1. Miesegaes G.,
    2. Lute S.,
    3. Aranha H.,
    4. Brorson K.,
    5. Flickinger M. C.
    Virus Retentive Filters. In Encyclopedia of Industrial Biotechnology, Flickinger M. C., Ed.; John Wiley & Sons, Inc.: New York, 2009.
  9. 9.↵
    1. Miesegaes G.,
    2. Lute S.,
    3. Dement-Brown J.,
    4. Kaushal S.,
    5. Strauss D.,
    6. Chen D.,
    7. Brorson K.
    A survey of quality attributes of virus spike preparations used in clearance studies. PDA J. Pharm. Sci. Technol. 2012, 66(5), 420–433.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Garnick R. L.
    Experience with viral contamination in cell culture. Dev. Biol. Stand. 1996, 88, 49–56.
    OpenUrlPubMed
  11. 11.↵
    1. Miesegaes G.,
    2. Bailey M.,
    3. Willkommen H.,
    4. Chen Q.,
    5. Roush D.,
    6. Blumel J.,
    7. Brorson K.
    Proceedings of the 2009 Viral Clearance Symposium. Dev Biol (Basel) 2010, 133, 3–101.
    OpenUrlPubMed
  12. 12.↵
    PDA Technical Report No. 41: Virus Filtration. Parenteral Drug Association: Bethesda, MD, 2008.
  13. 13.↵
    1. Brorson K.,
    2. Krejci S.,
    3. Lee K.,
    4. Hamilton E.,
    5. Stein K.,
    6. Xu Y.
    Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol. Bioeng. 2003, 82(3), 321–329.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Curtis S.,
    2. Lee K.,
    3. Blank G. S.,
    4. Brorson K.,
    5. Xu Y.
    Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnol. Bioeng. 2003, 84(2), 179–186.
    OpenUrlPubMed
  15. 15.↵
    1. Willkommen H.,
    2. Blümel J.,
    3. Brorson K.,
    4. Chen D.,
    5. Chen Q.,
    6. Gröner A.,
    7. Kreil T. R.,
    8. Robertson J. S.,
    9. Ruffing M.,
    10. Ruiz S.
    Meeting Report: PDA Virus and TSE Safety Forum. PDA J. Pharm. Sci. Technol. 2013, 67(2), 81–97.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Willkommen H.,
    2. Blümel J.,
    3. Brorson K.,
    4. Chen D.,
    5. Chen Q.,
    6. Gröner A.,
    7. Kreil T. R.,
    8. Robertson J. S.,
    9. Ruffing M.,
    10. Ruiz S.
    Meeting report—workshop on virus removal by filtration: trends and new developments. PDA J. Pharm. Sci. Technol. 2013, 67(2), 98–104.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Bakhshayeshi M.,
    2. Jackson N.,
    3. Kuriyel R.,
    4. Mehta A.,
    5. van Reis R.,
    6. Zydney A. L.
    Use of confocal scanning laser microscopy to study virus retention during virus filtration. J. Membr. Sci. 2011, 379(1–2), 260–267.
    OpenUrl
  18. 18.↵
    1. Phillips M. W.,
    2. DiLeo A. J.
    A validatible porosimetric technique for verifying the integrity of virus-retentive membranes. Biologicals 1996, 24(3), 243–253.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Peinador R. I.,
    2. Calvo J. I.,
    3. ToVinh K.,
    4. Thom V.,
    5. Prádanos P.,
    6. Hernández A.
    Liquid–liquid displacement porosimetry for the characterization of virus retentive membranes. J. Membr. Sci. 2011, 372(1-2), 366–372.
    OpenUrl
  20. 20.↵
    1. Bolton G.,
    2. Cormier J.,
    3. Krishnan M.,
    4. Lewnard J.,
    5. Lutz H.
    Integrity testing of normal flow parvovirus filters using air-liquid based tests. Bioprocessing J. 2006, 5(1), 50.
    OpenUrl
  21. 21.↵
    1. Giglia S.,
    2. Krishnan M.
    High sensitivity binary gas integrity test for membrane filters. J. Membr. Sci. 2008, 323(1), 60–66.
    OpenUrl
  22. 22.↵
    1. Hirasaki T.,
    2. Noda T.,
    3. Nakano H.,
    4. Ishizaki Y.,
    5. Manabe S.,
    6. Yamamoto N.
    Mechanism of removing Japanese encephalitis virus (JEV) and gold particles using cuprammonium regenerated cellulose hollow fiber (i-BMM or BMM) from aqueous solution containing protein. Polym. J. 1994, 26(11), 1244–1256.
    OpenUrl
  23. 23.↵
    1. Bakhshayeshi M.,
    2. Kanani D. M.,
    3. Mehta A.,
    4. van Reis R.,
    5. Kuriyel R.,
    6. Jackson N.,
    7. Zydney A. L.
    Dextran sieving test for characterization of virus filtration membranes. J. Membr. Sci. 2011, 379(1), 239–248.
    OpenUrl
  24. 24.↵
    1. Zachariah M. R.,
    2. Tarlov M. J.,
    3. Etzel M.,
    4. Brorson K.
    1. Lute S.,
    2. Riordan W.,
    3. Pease L. F. III.,
    4. Tsai D.-H.,
    5. Levy R.,
    6. Haque M.,
    7. Martin J.,
    8. Moroe I.,
    9. Sato T.,
    10. Morgan M.,
    11. Krishnan M.,
    12. Campbell J.,
    13. Genest P.,
    14. Dolan S.,
    15. Tarrach K.,
    16. Meyer A.
    ; PDA Virus Filter Task Force; Zachariah M. R., Tarlov M. J., Etzel M., Brorson K. A consensus rating method for small virus-retentive filters. I. Method development. PDA J. Pharm. Sci. Technol. 2008, 62(5), 318–333.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Grant D. C.,
    2. Liu B. Y. H.
    Sieving capture of liquidborne particles by microporous membrane filtration media. Particle & Particle Systems Characterization 1991, 8(1–4), 142–150.
    OpenUrl
  26. 26.↵
    1. DiLeo A. J.,
    2. Vacante D. A.,
    3. Deane E. F.
    Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification. Biologicals 1993, 21(3), 275–286.
    OpenUrlPubMed
  27. 27.↵
    1. Grant D. C.,
    2. Liu B. Y. H.,
    3. Fisher W. G.,
    4. Bowling R. A.
    Particle capture mechanisms in gases and liquids: an analysis of operative mechanisms in membrane/fibrous filters. J. Environ. Sci. 1989, 32(4), 43–51.
    OpenUrl
  28. 28.↵
    FDA, U.S. Department of Health and Human Services. Guidance for Industry. Sterile Drug Products Produced by Aseptic Processing—Current Good Manufacturing Practice, 2004.
  29. 29.↵
    ASTM F838–05 Standard Test Method for Determining Bacterial Retention of Membrane Filters Utilized for Liquid Filtration, 2005.
  30. 30.↵
    1. Wurm F. M.
    Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22(11), 1393–1398.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.↵
    1. Berting A.,
    2. Farcet M. R.,
    3. Kreil T. R.
    Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol. Bioeng. 2010, 106(4), 598–607.
    OpenUrlPubMed
  32. 32.↵
    1. Garnick R. L.
    Raw materials as a source of contamination in large-scale cell culture. Dev. Biol. Stand. 1998, 93, 21–29.
    OpenUrlPubMedWeb of Science
  33. 33.↵
    1. Nims R. W.
    Detection of adventitious viruses in biologicals—a rare occurrence. Dev. Biol. (Basel) 2006, 123, 153–64, discussion 183–197.
    OpenUrlPubMed
  34. 34.↵
    1. Oehmig A.,
    2. Buttner M.,
    3. Weiland F.,
    4. Werz W.,
    5. Bergemann K.,
    6. Pfaff E.
    Identification of a calicivirus isolate of unknown origin. J. Gen. Virol. 2003, 84(10), 2837–2845.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Onions D.
    Animal virus contaminants of biotechnology products. Dev. Biol. (Basel) 2004, 118, 155–163.
    OpenUrlPubMed
  36. 36.↵
    1. Moody M.,
    2. Alves W.,
    3. Varghese J.,
    4. Khan F.
    Mouse minute virus (MMV) contamination—a case study: detection, root cause determination, and corrective actions. PDA J. Pharm. Sci. Technol. 2011, 65(6), 580–588.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Victoria J. G.,
    2. Wang C.,
    3. Jones M. S.,
    4. Jaing C.,
    5. McLoughlin K.,
    6. Gardner S.,
    7. Delwart E. L.
    Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. J. Virol. 2010, 84(12), 6033–6040.
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. Tidona C. A.,
    2. Darai G.
    The Springer Index of Viruses, 2nd ed.; Springer: New York, 2011.
  39. 39.↵
    PDA Technical Report No. 47: Preparation of Virus Spikes Used for Virus Clearance Studies. Parenteral Drug Association: Bethesda, MD, 2010.
  40. 40.↵
    1. Cabatingan M.
    Impact of virus stock quality on virus filter validation. BioProcess Int. 2005, 3(10), S39–S43.
    OpenUrl
  41. 41.↵
    1. Khan N. Z.,
    2. Parrella J. J.,
    3. Genest P. W.,
    4. Colman M. S.
    Filter preconditioning enables representative scaled-down modelling of filter capacity and viral clearance by mitigating the impact of virus spike impurities. Biotechnol. Appl. Biochem. 2009, 52(4), 293–301.
    OpenUrlPubMed
  42. 42.↵
    1. Bolton G.,
    2. Cabatingan M.,
    3. Rubino M.,
    4. Lute S.,
    5. Brorson K.,
    6. Bailey M.
    Normal-flow virus filtration: detection and assessment of the endpoint in bio-processing. Biotechnol. Appl. Biochem. 2005, 42(2), 133–142.
    OpenUrlPubMed
  43. 43.↵
    1. Slocum A.,
    2. Burnham M.,
    3. Genest P.,
    4. Venkiteshwaran A.,
    5. Chen D.,
    6. Hughes J.
    Impact of virus preparation quality on parvovirus filter performance. Biotechnol Bioeng. 2013, 110(1), 229–239.
    OpenUrlPubMed
  44. 44.↵
    1. Asher D.,
    2. Slocum A.,
    3. Bergmann K.,
    4. Genest P.,
    5. Katz A.,
    6. Morais J.,
    7. Lawrence C.,
    8. Greenhalgh P.
    Predicting virus filtration performance with virus spike characterization. BioProcess Int. 2011, 9(3), 26–37.
    OpenUrl
  45. 45.↵
    1. Stuckey J.,
    2. Strauss D.,
    3. Venkiteshwaran A.,
    4. Gao J.,
    5. Luo W.,
    6. Quertinmont M.,
    7. O'Donnell S.,
    8. Chen D.
    A novel approach to achieving modular retrovirus clearance for a parvovirus filter. Biotechnol. Prog. 2014, 30(1), 79–85.
    OpenUrl
  46. 46.↵
    1. Blumel J.
    , Paul Ehrlich Institut, Germany. Reduced Viral Clearance Program Based on Platform Data for Biotech and Plasma Derived Products. PDA European Virus & TSE Safety Forum, Barcelona, Spain, 2011.
  47. 47.↵
    1. King K.
    FDA CDER. Virus Clearance Integration: Critical Considerations and Orthogonality. PDA European Virus & TSE Safety Forum, Berlin, Germany, 2013.
PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology: 68 (3)
PDA Journal of Pharmaceutical Science and Technology
Vol. 68, Issue 3
May/June 2014
  • Table of Contents
  • Index by Author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley, Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: 10.5731/pdajpst.2014.00978

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies
Eva Gefroh, Houman Dehghani, Megan McClure, Lisa Connell-Crowley, Ganesh Vedantham
PDA Journal of Pharmaceutical Science and Technology May 2014, 68 (3) 297-311; DOI: 10.5731/pdajpst.2014.00978
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Size Exclusion Mechanism of Virus Filter Retention
    • Selection of Model Viruses for Viral Clearance Studies
    • Datasets Comparing Clearance of Different Model Viruses
    • Conclusions and Recommendations
    • Declarations
    • Acknowledgements
    • References
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Using Sensitivity Analysis to Simplify the Virus Safety Factor Calculation in the Manufacture of Biopharmaceuticals
  • Proceedings of the 2019 Viral Clearance Symposium, Session 4: Viral Clearance Strategy and Process Understanding
  • Proceedings of the 2017 Viral Clearance Symposium, Session 2.1: DSP Unit Operations--Virus Filtration/Inactivation
  • Viral Clearance Using Traditional, Well-Understood Unit Operations Session 1.2: Virus-Retentive Filtration
  • Viral Clearance of Traditional Unit Operations: Virus-Retentive Filtration
  • Session 4: Overall Integrated Viral Clearance and Adventitious Agents Strategy
  • Google Scholar

More in this TOC Section

  • Mechanical Container Closure Integrity Test: A Method for Cartridge Systems
  • A Container Closure Integrity Test Method for Vials Stored at Cryogenic Conditions Using Headspace Oxygen Analysis
  • Best Practices for Microbial Challenge In-Use Studies to Evaluate the Microbial Growth Potential of Parenteral Biological Products; Industry and Regulatory Considerations
Show more Technology/Application

Similar Articles

Keywords

  • viral filtration
  • Parvovirus
  • MMV-only
  • Viral clearance

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire