Skip to main content
  • Main menu
  • User menu
  • Search

Main menu

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
PDA Journal of Pharmaceutical Science and Technology
  • .
    • Visit PDA
    • PDA Letter
    • Technical Reports
    • news uPDATe
    • Bookstore
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
PDA Journal of Pharmaceutical Science and Technology

Advanced Search

  • Home
  • Content
    • Current Issue
    • Past Issues
    • Accepted Articles
    • Email Alerts
    • RSS
    • Terms of Use
  • About PDA JPST
    • JPST Editors and Editorial Board
    • About/Vision/Mission
    • Paper of the Year
  • Author & Reviewer Resources
    • Author Resources / Submit
    • Reviewer Resources
  • JPST Access and Subscriptions
    • PDA Members
    • Institutional Subscriptions
    • Nonmember Access
  • Support
    • Join PDA
    • Contact
    • Feedback
    • Advertising
    • CiteTrack
  • Follow pda on Twitter
  • Visit PDA on LinkedIn
  • Visit pda on Facebook
Research ArticleRESEARCH ARTICLE

The Fate of Silicone Oil During Heat-curing Glass Siliconization - Changes in Molecular Parameters Analyzed by Size Exclusion and High Temperature Gas Chromatography

Tobias Mundry, Thomas Schurreit and Peter Surmann
PDA Journal of Pharmaceutical Science and Technology September 2000, 54 (5) 383-397;
Tobias Mundry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tobias.mundry@schering.de
Thomas Schurreit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Surmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The siliconization of pharmaceutical glass containers, usually for parenteral formulations, is performed in a so-called heat-curing process using diluted aqueous emulsions of medical grade silicone oils. To do this, the emulsion film is spread on the inner container surface, followed by an application of dry heat at temperatures above 300°C. Water and surfactants are removed by degradation and vaporization, while the thermostable poly(dimethylsiloxane) (PDMS) is left on the surface.

In the present study, heat-cured siliconized glass containers of two different types were solvent-extracted to obtain material of heat-treated PDMS. These samples were analyzed by size exclusion chromatography (SEC) and hightemperature gas chromatography (GC) with special respect to low molecular-weight siloxanes (LMWS). By comparison with the untreated starting materials, significant changes in the molecular weight distribution (MWD) of the silicone oil were revealed.

Almost all of the LMWS present in untreated materials were not detectable in the heat-cured extract of a 100 cSt. Baysilone™ silicone oil. Small amounts of PDMS-molecules, with chain lengths of 25 up 45 siloxane units, were traceable. The examination of a second product of higher viscosity yielded unexpected results. The heat-treated extract contained none of the siloxanes that were detected in the starting material. Siloxanes of chain lengths of up to 45 units having molecular weights of over 3000 g/mol could not be found after the siliconization process. This led to the conclusion that not only vaporization effects must be responsible for their absence, but also that silicone suffers from a heat-induced degradation. The results of SEC and GC analysis were supported by each other. The whole molecular weight distribution and four distinct fractions were characterized by SEC, while the GC analysis was capable of a high-resolution view into the LMWS fraction below 3500 g/mol.

In conclusion, the benefit of the heat treatment is that no LMWS, a source of toxicological concern, remain in the respective containers. On the other hand, an increase in molecular weight and viscosity of the silicone oil, and thus a possible change of the lubricating properties, is likely to happen through removal of LMWS. But these changes probably have no impact on the hydrophobic surface behavior of silicone-treated glass.

  • medical grade silicone oil
  • poly(dimethylsiloxane)
  • molecular weight distribution
  • heat-curing siliconization
  • parenteral glass containers
  • low molecular-weight siloxanes

Footnotes

  • Copyright © Parenteral Drug Association. All rights reserved.

PDA members receive access to all articles published in the current year and previous volume year. Institutional subscribers received access to all content. Log in below to receive access to this article if you are either of these.  

If you are neither or you are a PDA member trying to access an article outside of your membership license, then you must purchase access to this article (below). If you do not have a username or password for JPST, you will be required to create an account prior to purchasing. 

Full issue PDFs are for PDA members only.

Note to pda.org users

The PDA and PDA bookstore websites (www.pda.org and www.pda.org/bookstore) are separate websites from the PDA JPST website. When you first join PDA, your initial UserID and Password are sent to HighWirePress to create your PDA JPST account. Subsequent UserrID and Password changes required at the PDA websites will not pass on to PDA JPST and vice versa. If you forget your PDA JPST UserID and/or Password, you can request help to retrieve UserID and reset Password below.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

patientACCESS

patientACCESS - Patients desiring access to articles

Full issue PDFs are for PDA members only. You can join PDA at www.pda.org. 

PreviousNext
Back to top

In This Issue

PDA Journal of Pharmaceutical Science and Technology
Vol. 54, Issue 5
September/October 2000
  • Table of Contents
  • Index by Author
Download PDF
Article Alerts
Email Article
Citation Tools
Share
The Fate of Silicone Oil During Heat-curing Glass Siliconization - Changes in Molecular Parameters Analyzed by Size Exclusion and High Temperature Gas Chromatography
Tobias Mundry, Thomas Schurreit, Peter Surmann
PDA Journal of Pharmaceutical Science and Technology Sep 2000, 54 (5) 383-397;
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget

Jump to section

  • Article
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Monitoring of Mannitol Phase Behavior during Freeze-Drying Using Non-Invasive Raman Spectroscopy
  • Long-Term Stabilization of a New Freeze-Dried and Albumin-Free Formulation of Recombinant Human Interferon Alpha 2b
  • A Novel Approach to the Statistical Evaluation of Media Fill Tests by the Difference from No Contamination Data
Show more RESEARCH ARTICLE

Similar Articles

Readers

  • About
  • Table of Content Alerts/Other Alerts
  • Subscriptions
  • Terms of Use
  • Contact Editors

Author/Reviewer Information

  • Author Resources
  • Submit Manuscript
  • Reviewers
  • Contact Editors

Parenteral Drug Association, Inc.

  • About
  • Advertising/Sponsorships
  • Events
  • PDA Bookstore
  • Press Releases

© 2025 PDA Journal of Pharmaceutical Science and Technology Print ISSN: 1079-7440  Digital ISSN: 1948-2124

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on PDA Journal of Pharmaceutical Science and Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Fate of Silicone Oil During Heat-curing Glass Siliconization - Changes in Molecular Parameters Analyzed by Size Exclusion and High Temperature Gas Chromatography
(Your Name) has sent you a message from PDA Journal of Pharmaceutical Science and Technology
(Your Name) thought you would like to see the PDA Journal of Pharmaceutical Science and Technology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The Fate of Silicone Oil During Heat-curing Glass Siliconization - Changes in Molecular Parameters Analyzed by Size Exclusion and High Temperature Gas Chromatography
Tobias Mundry, Thomas Schurreit, Peter Surmann
PDA Journal of Pharmaceutical Science and Technology Sep 2000, 54 (5) 383-397;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.